|
- 2015
超声化学原位合成纳米Al2O3/6063Al复合材料组织及高温蠕变性能
|
Abstract:
[1] | Tjong S C, Ma Z Y. Microstructural and mechanical characteristics of in situ metal matrix composites[J]. Materials Science and Engineering: R: Reports, 2000, 29(3): 49-113. |
[2] | Reddy B S B, Rajasekhar K, Venu M, et al. Mechanical activation-assisted solid-state combustion synthesis of in situ aluminum matrix hybrid (Al3Ni/Al2O3) nanocomposites[J]. Journal of Alloys and Compounds, 2008, 465(1): 97-105. |
[3] | Dinaharan I, Murugan N, Parameswaran S. Influence of in situ formed ZrB2 particles on microstructure and mechanical properties of AA6061 metal matrix composites[J]. Materials Science and Engineering: A, 2011, 528(18): 5733-5740. |
[4] | Mohamed F A, Park K T, Lavernia E J. Creep behavior of discontinuous SiC-Al composites[J]. Materials Science and Engineering: A, 1992, 150(1): 21-35. |
[5] | González-Doncel G, Sherby O D. High temperature creep behavior of metal matrix aluminum/SiC composites[J]. Acta Metallurgica et Materialia, 1993, 41(10): 2797-2805. |
[6] | Pandey A B, Mishra R S, Mahajan Y R. Creep behaviour of an aluminium-silicon carbide particulate composite[J]. Scripta Metallurgica et Materialia, 1990, 24(8): 1565-1570. |
[7] | Cadek J, ?ustek V, Pahutova M. Is creep in discontinuous metal matrix composites lattice diffusion controlled?[J]. Materials Science and Engineering: A, 1994, 174(2): 141-147. |
[8] | Zheng M. Microstructure and properties of aluminum matrix composites synthesized by direct melt reaction under ultrasonic field[D]. Zhenjiang: Jiangsu University, 2011 (in Chinese). 郑梦. 超声场下熔体反应合成铝基复合材料的组织与性能[D]. 镇江: 江苏大学, 2011. |
[9] | Mazahery A, Shabani M O. Characterization of cast A356 alloy reinforced with nano SiC composites[J]. Transactions of Nonferrous Metals Society of China, 2012, 22(2): 275-280. |
[10] | McKimpson M G, Scott T E. Processing and properties of metal matrix composites containing discontinuous reinforcement[J]. Materials Science and Engineering: A, 1989, 107: 93-106. |
[11] | Chou S N, Huang J L, Lii D F, et al. The mechanical properties and microstructure of Al2O3/aluminum alloy composites fabricated by squeeze casting[J]. Journal of Alloys and Compounds, 2007, 436(1): 124-130. |
[12] | Garcia-Cordovilla C, Louis E, Narciso J, et al. A differential scanning calorimetry study of solid state reactions in AA6061/SiC, AA6061/Al2O3 and A357/SiC composites fabricated by means of compocasting[J]. Materials Science and Engineering: A, 1994, 189(1): 219-227. |
[13] | Lee J K, Taya M. Strengthening mechanism of shape memory alloy reinforced metal matrix composite[J]. Scripta Materialia, 2004, 51(5): 443-447. |
[14] | Dragone T L, Nix W D. Steady state and transient creep properties of an aluminum alloy reinforced with alumina fibers[J]. Acta Metallurgica et Materialia, 1992, 40(10): 2781- 2791. |
[15] | Pandey A B, Mishra R S, Mahajan Y R. Steady state creep behaviour of silicon carbide particulate reinforced aluminium composites[J]. Acta Metallurgica et Materialia, 1992, 40(8): 2045-2052. |
[16] | Pandey A B, Mishra R S, Mahajan Y R. High-temperature creep of Al/TiB2 particulate composites[J]. Materials Science and Engineering: A, 1994, 189(1): 95-104. |
[17] | Mishra R S, Pandey A B. Some observations on the high-temperature creep behavior of 6061 Al-SiC composites[J]. Metallurgical and Materials Transactions A, 1990, 21(7): 2089-2090. |
[18] | Cadek J, Oikawa H, ?ustek V. Threshold creep behaviour of discontinuous aluminium and aluminium alloy matrix composites: An overview[J]. Materials Science and Engineering: A, 1995, 190(1): 9-23. |
[19] | Li Y, Langdon T G. Creep behavior of an Al-6061 metal matrix composite reinforced with alumina particulates[J]. Acta Materialia, 1997, 45(11): 4797-4806. |
[20] | Salmon C, Colin C, Molins R, et al. Strengthening of Al/Ni-based composites by in situ growth of intermetallic particles[J]. Materials Science and Engineering: A, 2002, 334(1): 193-200. |
[21] | Central Iron and Steel Research Institute, Ministry of Metallurgical Industry. GB/T 2039-1997 Metallic materials-Creep and stress-rupture test in tension[S]. Beijing: Standards Press of China, 1997 (in Chinese). 冶金工业部钢铁研究总院.GB/T 2039-1997 金属拉伸蠕变及持久试验方法[S]. 北京:中国标准出版社, 1997. |
[22] | Tjong S C, Ma Z Y. High-temperature creep behaviour of powder-metallurgy aluminium composites reinforced with SiC particles of various sizes[J]. Composites Science and Technology, 1999, 59(7): 1117-1125. |
[23] | Purushothaman S, Tien J K. Role of back stress in the creep behavior of particle strengthened alloys[J]. Acta Metallurgica, 1978, 26(4): 519-528. |
[24] | Li Y, Mohamed F A. An investigation of creep behavior in an SiC/2124 Al composite[J]. Acta Materialia, 1997, 45(11): 4775-4785. |
[25] | Wang X J, Wang N Z, Wang L Y, et al. Processing, microstructure and mechanical properties of micro-SiC particles reinforced magnesium matrix composites fabricated by stir casting assisted by ultrasonic treatment processing[J]. Materials & Design, 2014, 57: 638-645. |
[26] | Zhang J, Zhao Y, Xu X, et al. Effect of ultrasonic on morphology of primary Mg2Si in in-situ Mg2Si/Al composite[J]. Transactions of Nonferrous Metals Society of China, 2013, 23(10): 2852-2856. |
[27] | Zhang S L, Zhao Y T, Chen G. In situ (Mg2Si+MgO)/Mg composites fabricated from AZ91-Al2(SiO3)3 with assistance of high-energy ultrasonic field[J]. Transactions of Nonferrous Metals Society of China, 2010, 20(11): 2096-2099. |
[28] | Sherby O D, Klundt R H, Miller A K. Flow stress, subgrain size, and subgrain stability at elevated temperature[J]. Metallurgical Transactions A, 1977, 8(6): 843-850. |
[29] | Ma Z Y, Tjong S C. Creep deformation characteristics of discontinuously reinforced aluminium-matrix composites[J]. Composites Science and Technology, 2001, 61(5): 771-786. |