|
- 2015
基于CO2连续激光器模拟的氮化物填充聚四氟乙烯复合材料耐烧蚀性能
|
Abstract:
通过在聚四氟乙烯(PTFE)基体中添加不同比例微米、纳米尺度氮化硼(BN)或氮化铝(AlN), 以提高高压断路器PTFE喷口复合材料的耐电弧烧蚀性能。利用CO2连续激光器烧蚀PTFE喷口材料来模拟电弧烧蚀过程, 分析了光反射率、热导率以及相对介电常数对烧蚀量的影响。通过比较复合材料烧蚀量大小和数值分析结果可知, 材料热学参数(热导率和热扩散系数)对烧蚀量起主要作用, BN/PTFE复合材料的耐烧蚀能力优于AlN/PTFE复合材料, 10.0% BN/PTFE复合材料的热导率可以达到0.46 W/(m·K), 比纯PTFE的提高了92%, 相应烧蚀过程中的质量损失为21.8 mg, 比3.0% AlN/PTFE复合材料的质量损失降低了47%, 有效提高了喷口复合材料的耐烧蚀能力。 In order to improve the arc-resistance ablation property of polytetrafluoroethylene (PTFE) nozzle composites of high voltage circuit breaker, micro or nano size boron nitride (BN) or aluminium nitride (AlN) with different ratios were dispersed into PFTE matrix. CO2 continuous laser was used for ablating PTFE nozzle material to simulate electric arc ablation process. The effects of light reflectance, thermal conductivity and relative dielectric constants on ablation amount were analyzed. By comparing ablation amount of composites and numerical analytical results, the key factors affecting ablation amount are thermal parameters of materials (thermal conductivity and thermal diffusion coefficient). BN/PTFE composites have higher ablation resistance property compared with AlN/PTFE composites. The thermal conductivity of 10.0% BN/PTFE composites is up to 0.46 W/(m·K) which is 92% higher than that of pure PTFE. The mass loss of 10.0% BN/PTFE composits in ablation process is 21.8 mg, which is 47% less than that of 3.0% AlN/PTFE composites. The ablation resistance property of nozzle composites is effectively improved. 国家电网公司科技项目(JSKF[2013]42)
[1] | Li Y P, Zhang J H. Experimental study of nozzle materials of high voltage circuit breaker[J]. High Voltage Apparatus, 2002, 38(4): 19-21 (in Chinese). 李仰平, 张建宏. 高压断路器喷口材料的试验研究[J]. 高压电器, 2002, 38(4): 19-21. |
[2] | Li Y P, Geng B, Liu Z X, et al. Research on the electric properties of PTFE composite used in nozzle of SF6 circuit breaker[J]. High Voltage Apparatus, 2006, 42(2): 122-124 (in Chinese). 李仰平, 耿波, 刘泽响, 等. SF6断路器喷口用复合PTFE电气性能的研究[J]. 高压电器, 2006, 42(2): 122-124. |
[3] | Yan X Y, Yuan Y, Zhang S R, et al. Fabrication and thermal expansion behavior of SiO2-TiO2 ceramic filled PTFE composites[J]. Acta Materiae Compositae Sinica, 2013, 30(6): 108-113 (in Chinese). 闫翔宇, 袁颖, 张树人, 等. SiO2-TiO2/聚四氟乙烯复合材料的制备及热膨胀性能[J]. 复合材料学报, 2013, 30(6): 108-113. |
[4] | Gao S Z, Wei H Z, Li D Y, et al. Review on ablative materials[J]. New Chemical Materials, 2009, 37(2): 19-21 (in Chinese). 高守臻, 魏化震, 李大勇, 等. 烧蚀材料综述[J]. 化工新型材料, 2009, 37(2): 19-21. |
[5] | Wang F Z, Qin Y, Huang Z X, et al. Recent studies on the modification of resin matrix ablative material by nano-materials[J]. Materials Review A, 2012, 26(7): 93-96 (in Chinsese). 王富忠, 秦岩, 黄志雄, 等. 纳米材料改性树枝基耐烧蚀材料研究新进展[J]. 材料导报A, 2012, 26(7): 93-96. |
[6] | Zhu Y L, Pei J Y. Study on PTFE composite modified by inorganic nanometer material[J]. China Plastics Industry, 2005, 33(5): 8-11 (in Chinese). 朱友良, 裴建云. 无机纳米粒子填充改性聚四氟乙烯复合材料的研究[J]. 塑料工业, 2005, 33(5): 8-11. |
[7] | Wang L L, Tao G L. Research on PTFE matrix composite with high thermal conductivity[J]. China Plasitcs, 2004, 18(4): 26-28 (in Chinese). 王亮亮, 陶国良. 高导热聚四氟乙烯复合材料的研究[J]. 中国塑料, 2004, 18(4): 26-28. |
[8] | Ou D B, Chen L Z, Qu D J, et al. Investigation of aeroheating ablation/erosion experiment of composite materials in arc-heater[J]. Aerospace Materials & Technology, 2010(4): 68-71 (in Chinese). 欧东斌, 陈连忠, 曲德军, 等. 电弧加热器驻点烧蚀/侵蚀试验技术[J]. 宇航材料工艺, 2010(4): 68-71. |
[9] | Park H Y, Kang D P, Han D H, et al. Arc resistant properties of PTFE composites[C]//Proceedings of the 5th International Conference on Properties and Applications of Dielectric Materials. Piscataway, NJ: IEEE Press, 1997: 859-862. |
[10] | Xie T, Yang H P, Jiang K. Numerical simulation of influence of filler content on tribological properties of Cu/PTFE composites[J]. Acta Materiae Compositae Sinica, 2015, 32(1): 39-46 (in Chinese). 解挺, 杨华平, 江凯. 数值模拟填料含量对Cu/PTFE复合材料摩擦性能的影响[J]. 复合材料学报, 2015, 32(1): 39-46. |
[11] | Park H Y, Kang D P, Ahn M S, et al. Light reflectance and arc resistance of nozzle for circuit breaker[C]//International Conference on Solid Dielectrics. Piscataway, NJ: IEEE Press, 2004: 435-438. |
[12] | Yan Y H, Zhong M L. The application of high power laser processing[M]. Tianjin: Tianjin Technology Publishing House, 1994: 74-78 (in Chinese). 闫毓禾, 钟敏霖. 高功率激光加工及其应用[M]. 天津: 天津技术科学出版社, 1994: 74-78. |
[13] | Chen Q H. Simulation of interaction between material and thermal field[M]. Yunnan: Yunnan Technology Publishing House, 2001: 92-95 (in Chinese). 陈庆华. 激光与材料相互作用及热场模拟[M]. 云南: 云南科学技术出版社, 2001: 92-95. |
[14] | Li Y P, Zhou Q, Liu X. Experimental study on arc ablation resistance and dielectric property of PTFE composites[J]. Insulating Materials, 2006, 39(2): 36-38 (in Chinese). 李仰平, 周庆, 刘翔. 复合聚四氟乙烯耐电弧烧蚀及其介电性能的试验研究[J]. 绝缘材料, 2006, 39(2): 36-38. |
[15] | Zhu X W, Huang J, Liu Y, et al. Study of calcium fluoride contained PTFE ablated by high power laser beam as electric arc[J]. Insulating Materials, 2013, 46(2): 16-21 (in Chinese). 朱晓雯, 黄坚, 刘宇, 等. 高功率激光模拟电弧烧蚀含氟化钙聚四氟乙烯的研究[J]. 绝缘材料, 2013, 46(2): 16-21. |