|
- 2017
多价金属离子增强琼脂-聚丙烯酸复合双网络水凝胶及其自修复性能
|
Abstract:
使水凝胶同时具备高强度和自修复性能,采用"一锅法"制备了多价金属离子Ca2+、Al3+、Fe3+增强琼脂(Agar)-聚丙烯酸(PAAc)复合双网络水凝胶Ca2+/Agar-PAA、Al3+/Agar-PAA和Fe3+/Agar-PAAc双网络水凝胶。研究不同多价金属离子对Agar-PAAc双网络水凝胶的增强作用及Fe3+/Agar-PAAc的自修复自愈合性能。结果表明,Fe3+/Agar-PAAc 的拉伸强度(320.7 kPa)和断裂伸长率(1 130%)分别为Ca2+/Agar-PAAc的12倍和9倍,Fe3+/Agar-PAAc 的断裂伸长率与Al3+/Agar-PAAc 相当,但拉伸强度为Al3+/Agar-PAAc的5倍。对样品实施定应变拉伸使内部发生破坏,被破坏的Fe3+/Agar-PAAc 在Fe3+溶液中浸泡30 min,修复率达到100%。被破坏的Fe3+/Agar-PAAc在50℃环境中处理15 min,修复率达到100%。切断的Fe3+/Agar-PAAc凝胶断面被固定在一起,在密封环境中放置48小时,试样断面可自愈合,且可拉伸至约8倍初始长度。Fe3+/Agar-PAAc双网络水凝胶具有优异力学性能和自修复性能,不施加温度、化学物质等外界刺激,实现两重网络均具有自修复性能的效果。 To obtain hydrogels with tough and self-healing properties, Ca2+/Agar-Polyacrylic acid(Ca2+/Agar-PAAc), Al3+/Agar-PAAc, Fe3+/Agar-PAAc composite double network hydrogels reinforced by ionic iron Ca2+, Al3+, Fe3+ cations were prepared by "one-pot" method. The enhancement function of metal ions Ca2+, Al3+, Fe3+, self-repairing properties, self-healing properties of reinforced hydrogels were studied. The tensile strength 320.7 kPa and elongation at break 1 130% of Fe3+/Agar-PAAc double network(DN) gels are 12 times and 9 times respectively those of Ca2+/Agar-PAAc DN gels. The tensile strength 320.7 kPa of Fe3+/Agar-PAAc DN gels is 5 times as large as that of Al3+/Agar-PAAc DN gels, elongation ratios of them are the same. Tensile with certain stain was applied to the sample to obtain damaged samples. The mechanical properties of Fe3+/Agar-PAAc DN hydrogels can be recovered to 100% of initial state after being soaked in ferric ion solution for 30 min. The mechanical properties of Fe3+/Agar-PAAc DN hydrogels can be recovered to 100% of initial state after being put in 50℃ condition for 15 min. By simply placing two hydrogel portions together and allowing enough self-healing time(48 h) for physical interactions to reestablish the network at the interface, the healed Fe3+/Agar-PAAc DN hydrogels can be stretched to 800% of initial length. The Fe3+/Agar-PAAc DN hydrogels reinforced by Fe3+ possess excellent mechanical properties and self-healing properties, without adding any chemicals and external stimuli, both networks possess self-healing properties. 国家自然科学基金(51273059);清华大学摩擦学国家重点实验室开放基金(SKLTKF14A09)
[1] | 乔堃, 郑裕东, 李佳琪, 等. 纳米细菌纤维素/聚乙烯醇复合水凝胶在模拟体液中的疲劳行为[J]. 复合材料学报, 2015, 32(5): 1271-1278. QIAO K, ZHENG Y D, LI J Q, et al. Fatigue behavior of nano bacterial cellulose/poly (vinyl alcohol) composite hydrogels in simulated body fluid[J]. Acta Materiae Compositae Sinica, 2015, 32(5): 1271-1278 (in Chinese). |
[2] | YOUNG T H, YAO N K, CHANG R F, et al. Evaluation of asymmetric poly (vinyl alcohol) membranes for use in artificial islets[J]. Biomaterials, 1996, 17(22): 2139-2145. |
[3] | OKA M. Biomechanics and repair of articular cartilge[J]. Journal of Orthopaedic Science, 2001, 6(5): 448-456. |
[4] | OKA M, CHANG Y S, NAKAMURA T, et al. Synthetic osteochondral replacement of the femoral articular surface[J]. Journal of Bone & Joint Surgery, British Volume, 1997, 79(6): 1003-1007. |
[5] | OKA M, NOGUCHI T, KUMAR P, et al. Development of an artificial articular cartilage[J]. Clinical Materials, 1990, 6(4): 361-381. |
[6] | AS'WI SZKOWSKI W, KU D N, BERSEE H E N, et al. An elastic material for cartilage replacement in an arthritic shoulder joint[J]. Biomaterials, 2006, 27(8): 1534-1541. |
[7] | SUN T L, KUROKAWA T, KURODA S, et al. Physical hydrogels composed of polyampholytes demonstrate high toughness and viscoelasticity[J]. Nature Materials, 2013, 12(10): 932-937. |
[8] | WEI Z, HE J, LIANG T, et al. Autonomous self-healing of poly (acrylic acid) hydrogels induced by the migration of ferric ions[J]. Polymer Chemistry, 2013, 4(17): 4601-4605. |
[9] | CHEN Q, ZHU L, HUANG L, et al. Fracture of the physically cross-linked first network in hybrid double network hydrogels[J]. Macromolecules, 2014, 47(6): 2140-2148. |
[10] | WEI Z, HE J, LIANG T, et al. Autonomous self-healing of poly (acrylic acid) hydrogels induced by the migration of ferric ions[J]. Polymer Chemistry, 2013, 4(17): 4601-4605. |
[11] | XIONG J Y, NARAYANAN J, LIU X Y, et al. Topology evolution and gelation mechanism of agarose gel[J]. The Journal of Physical Chemistry B, 2005, 109(12): 5638-5643. |
[12] | MARTIN D H, PETER G, CHRISTOPH L, et al. Self-healing materials[J]. Advanced Materials, 2010, 22(47): 5424-5430. |
[13] | BURCZAK K, GAMIAN E, KOCHMAN A. Long-term in vivo performance and biocompatibility of poly (vinyl alcohol) hydrogel macrocapsules for hybrid-type artificial pancreas[J]. Biomaterials, 1996, 17(24): 2351-2356. |
[14] | NOGUCHI T, YAMAMURO T, OKA M, et al. Poly (vinyl alcohol) hydrogel as an artificial articular cartilage: Evaluation of biocompatibility[J]. Journal of Applied Biomaterials, 1991, 2(2): 101-107. |
[15] | 李坚, 李学锋, 龙世军, 等. 3D 成型 SiO2/PVA水凝胶支架的摩擦行为[J]. 复合材料学报, 2016, 33(11): 2412-2418. LI J, LI X F, LONG S J, et al. Friction of SiO2/PVA hydrogel scaffold fabricated by 3D printing[J]. Acta Materiae Compositae Sinica, 2016, 33(11): 2412-2418 (in Chinese). |
[16] | GONG J P, KATSUYAMA Y, KUROKAWA T, et al. Double-network hydrogels with extremely high mechanical strength[J]. Advanced Materials, 2003, 15(14): 1155-1158. |
[17] | HENDERSON K J, ZHOU T C, OTIM K J, et al. Ionically cross-linked triblock copolymer hydrogels with high strength[J]. Macromolecules, 2010, 43(14): 6193-6201. |
[18] | LI W, AN H, TAN Y, et al. Hydrophobically associated hydrogels based on acrylamide and anionic surface active monomer with high mechanical strength[J]. Soft Matter, 2012, 8(18): 5078-5086. |
[19] | ZHONG M, LIU Y T, XIE X M. Self-healable, super tough graphene oxide-poly (acrylic acid) nanocomposite hydrogels facilitated by dual cross-linking effects through dynamic ionic interactions[J]. Journal of Materials Chemistry B, 2015, 3(19): 4001-4008. |
[20] | WANG Q, MYNAR J L, YOSHIDA M, et al. High-water-content mouldable hydrogels by mixing clay and a dendritic molecular binder[J]. Nature, 2010, 463(7279): 339-343. |
[21] | CHEN Y, KUSHNER A M, WILLIAMS G A, et al. Multiphase design of autonomic self-healing thermoplastic elastomers[J]. Nature Chemistry, 2012, 4(6): 467-472. |
[22] | http://en.wikipedia.org/wiki/Ionic_radius |
[23] | PEPPAS N A, HUANG Y, TORRES-LUGO M, et al. Physicochemical foundations and structural design of hydrogels in medicine and biology[J]. Annual Review of Biomedical Engineering, 2000, 2(1): 9-29. |
[24] | ITO K. 重合体網目の新規橋かけの概念 自由可動結合点を有するスライド-環ゲルの合成, 構造および性質[J]. Polymer Journal, 2007, 39(6): 489-499. |
[25] | HUANG T, XU H G, JIAO K X, et al. A novel hydrogel with high mechanical strength: A macromolecular microsphere composite hydrogel[J]. Advanced Materials, 2007, 19(12): 1622-1626. |
[26] | LUO F, SUN T L, NAKAJIMA T, et al. Oppositely charged polyelectrolytes form tough, self-healing, and rebuildable hydrogels[J]. Advanced Materials, 2015, 27(17): 2722-2727. |
[27] | ZHONG M, LIU X Y, SHI F K, et al. Self-healable, tough and highly stretchable ionic nanocomposite physical hydrogels[J]. Soft Matter, 2015, 11(21): 4235-4241. |
[28] | CHEN Q, ZHU L, CHEN H, et al. A novel design strategy for fully physically linked double network hydrogels with tough, fatigue resistant, and self-healing properties[J]. Advanced Functional Materials, 2015, 25(10): 1598-1607. |
[29] | TUNCABOYLU D C, SARI M, OPPERMANN W, et al. Tough and self-healing hydrogels formed via hydrophobic interactions[J]. Macromolecules, 2011, 44(12): 4997-5005. |
[30] | CHEN H, MA X, WU S, et al. A rapidly self-healing supramolecular polymer hydrogel with photostimulated room-temperature phosphorescence responsiveness[J]. Angewandte Chemie International Edition, 2014, 53(51): 14149-14152. |
[31] | CHEN Q, ZHU L, ZHAO C, et al. A robust, one-pot synthesis of highly mechanical and recoverable double network hydrogels using thermoreversible sol-gel polysaccharide[J]. Advanced Materials, 2013, 25(30): 4171-4176. |