|
- 2017
埃洛石纳米管/聚乙烯醇-淀粉复合膜的结构与性能
|
Abstract:
采用溶液流延法制备了埃洛石纳米管(HNTs)/聚乙烯醇(PVA)-淀粉复合膜,并利用SEM、XRD、DMA、TGA等分析测试手段研究了该复合膜的结构与性能。结果表明:随着HNTs含量增加,HNTs/PVA-淀粉复合膜的力学性能、热稳定性、耐水性能和紫外屏蔽性能均有提高。当HNTs与PVA-淀粉质量比为10%时,力学性能达到最佳,拉伸强度提高了22%。扫描电镜分析表明:HNTs能够以纳米尺度均匀分散于HNTs/PVA-淀粉复合膜中,且以单管状分布,与PVA-淀粉基体界面结合较好。动态力学性能分析表明:HNTs的加入对HNTs/PVA-淀粉复合膜的玻璃化转变温度影响不大,复合膜的储能模量升高,力学损耗下降。透光率测试结果表明:HNTs对HNTs/PVA-淀粉复合膜的透明性影响不大,而在紫外光区域(200~400 nm),透光率随HNTs量的增加而下降。 Halloysite nanotubes (HNTs)/Polyvinyl alcohol (PVA)-Starch composite films were prepared by solution casting method. And the structure and properties of HNTs/PVA-Starch composite films were investigated. The results show that with the increase of HNTs content, the mechanical properties, thermal stability, water resistance and ultraviolet-shielding property of HNTs/PVA-Starch composite membranes are improved. When the mass ratio of HNTs to PVA-Starch is 10%, the mechanical properties the composites are the best and the tensile strength increases by 22%. The morphological observations suggest that HNTs can be uniformly dispersed with a single tubular distribution and have good interfacial bonding in the HNTs/PVA-Starch composites. Dynamic mechanical analysis (DMA) shows that the addition of HNTs has little effect on the glass transition temperature of the HNTs/PVA-Starch composite film, while the storage modulus of the composite film increases and the mechanical loss decreases. The light transmittance test result shows that HNTs have little effect on the transparency of the HNTs/PVA-Starch composite film, while in the UV region (200-400 nm), the transmittance decreases with the increase of the amount of HNTs. 广东省部产学研项目(2013B090500085);广东省公益研究与能力建设专项(2014B030303004);广州市产学研协同创新项目(201508010022);广东省应用型科技研发专项资金(2015B020235010)
[1] | YE Y, CHEN H, WU J, et al. High impact strength epoxy nanocomposites with natural nanotubes[J]. Polymer, 2007, 48(21):6426-6433. |
[2] | QIU K, NETRAVALI A N. Halloysite nanotube reinforced biodegradable nanocomposites using noncrosslinked and malonic acid crosslinked polyvinyl alcohol[J]. Polymer Compo-sites, 2013, 34(5):799-809. |
[3] | YOON S D. Cross-linked potato starch-based blend films using ascorbic acid as a plasticizer[J]. Journal of Agricultural and Food Chemistry, 2014, 62(8):1755-1764. |
[4] | ALOUI H, KHWALDIA K, HAMDI M, et al. Synergistic effect of halloysite and cellulose nanocrystals on the functional properties of PVA based nanocomposites[J]. ACS Sustainable Chemistry Engineering, 2016, 4(3):794-800. |
[5] | HUANG B, LIU M X, LONG Z R, et al. Effects of halloysite nanotubes on physical properties and cytocompatibility of alginate composite hydrogels[J]. Materials Science and Engineering C, 2017, 70:303-310. |
[6] | 黄志方, 贾志欣, 郭宝春, 等. PBT/埃洛石纳米管复合材料的结构与性能[J]. 塑料工业, 2008(05):29-31, 35. HUANG Z F, JIA Z X, GUO B C, et al. Structure and property of PBT/halloysite nano-tube composite[J]. China Plastics Industry, 2008(05):29-31, 35(in Chinese). |
[7] | ZHONG B C, JIA Z X, LUO Y F, et al. Preparation of halloysite nanotubes supported 2-mercaptobenzimidazole and its application in natural rubber[J]. Composites Part A, 2015, 73:63-71. |
[8] | 张蓉佳, 况杰, 张莹莹, 等. 聚乙烯醇/淀粉复合薄膜的制备与性能研究[J]. 塑料科技, 2016, 44(8):61-64. ZHANG R J, KUANG J, ZHANG Y Y, et al. Study on preparation and properties of starch/polyvinyl alcohol composite films[J]. Plastics Science and Technology, 2016, 44(8):61-64(in Chinese). |
[9] | KHOO W S, ISMAIL H, ARIFFIN H. Tensile, swelling, and oxidative degradation properties of crosslinked polyvinyl alchol/chitosan/halloysite nanotube composites[J]. International Journal of Polymeric Materials and Polymeric Biomaterials, 2013, 62(7):390-396. |
[10] | 全国塑料标准化技术委员会.塑料拉伸性能的测定第3部分:薄膜和薄片的试验条件:GB/T 1040.3-2006[S]. 北京:中国标准出版社, 2006. National Technical Committee on Plastics of Standardization Administration of China. Plastics-Determination of tensile properties-Part 3:Test conditions for films and sheets:GB/T 1040.3-2006[S]. Beijing:Standards Press of China, 2006(in Chinese). |
[11] | 杨晓明, 王铎, 田耘. 纳米MgO/高密度聚乙烯复合材料的性能[J]. 复合材料学报, 2016, 33(2):234-239. YANG X M, WANG D, TIAN Y. Performance of nano-MgO/high density polyethylene composites[J]. Acta Materiae Compositae Sinica, 2016, 33(2):234-239(in Chinese). |
[12] | SHI R, BI J, ZHANG Z, et al. The effect of citric acid on the structural properties and cytotoxicity of the polyvinyl alcohol/starch films when molding at high temperature[J]. Carbohydrate Polymers, 2008, 74(4):763-770. |
[13] | ZANELA J, OLIVATO J B, DIAS A P, et al. Mixture design applied for the development of films based on starch, polyvinyl alcohol, and glycerol[J]. Journal of Applied Polymer Science, 2015, 132(43):42697. |
[14] | CHAI W L, CHOW J D, CHEN C C, et al. Evaluation of the biodegradability of polyvinyl alcohol/starch blends:A methodological comparison of environmentally friendly materials[J]. Journal of Polymers and the Environment, 2009, 17(2):71-82. |
[15] | NISTOR M T, VASILE C. Influence of the nanoparticle type on the thermal decomposition of the green starch/poly(vinyl alcohol)/montmorillonite nanocomposites[J]. Journal of Thermal Analysis and Calorimetry, 2013, 111(3):1903-1919. |
[16] | CINELLI P, CHIELLINI E, GORDON S H, et al. Characteristics and degradation of hybrid composite films prepared from PVA, starch and lignocellulosics[J]. Macromolecular Symposia, 2003, 197(1):143-156. |
[17] | TANG X, ALAVI S. Recent advances in starch, polyvinyl alcohol based polymer blends, nanocomposites and their biodegradability[J]. Carbohydrate Polymers, 2011, 85(1):7-16. |
[18] | MAJDZADEH-ARDAKANI K, NAZARI B. Improving the mechanical properties of thermoplastic starch/poly (vinyl alcohol)/clay nanocomposites[J]. Composites Science and Technology, 2010, 70(10):1557-1563. |
[19] | YAO K H, CAI J, LIU M, et al. Structure and properties of starch/PVA/nano-SiO2 hybrid films[J]. Carbohydrate Polymers, 2011, 86(4):1784-1789. |
[20] | DEBIAGI F, MALI S. Functional properties of extruded nanocomposites based on cassava starch, polyvinyl alcohol and montmorillonite[J]. Macromolecular Symposia, 2012, 319(1):235-239. |
[21] | LIU M X, JIA Z X, JIA D M, et al. Recent advance in research on halloysite nanotubes-polymer nanocomposite[J]. Progress in Polymer Science, 2014, 39(8):1498-1525. |
[22] | LUO C, ZOU Z P, LUO B H, et al. Enhanced mechanical properties and cytocompatibility of electrospun poly(l-lactide) composite fiber membranes assisted by polydopamine-coated halloysite nanotubes[J]. Applied Surface Science, 2016, 369:82-91. |
[23] | LIU M X, ZHANG Y, WU C C, et al. Chitosan/halloysite nanotubes bionanocomposites:Structure, mechanical properties and biocompatibility[J]. International Journal of Biological Macromolecules, 2012, 51(4):566-575. |
[24] | LIU M X, GUO B C, DU M L, et al. Drying induced aggregation of halloysite nanotubes in polyvinyl alcohol/halloysite nanotubes solution and its effect on properties of composite film[J]. Applied Physics A, 2007, 88(2):391-395. |
[25] | 程志林, 孙伟. 埃洛石纳米硅铝管(HNTs)的结构和物理性能[J]. 石油学报(石油加工), 2016, 32(1):150-155. CHENG Z L, SUN W. Structure and physical properties of halloysite nanotubes[J]. Acta Petrolei Sinica(Petroleum Processing Section), 2016, 32(1):150-155(in Chinese). |