全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2018 

基于树脂流动的变截面复合材料结构固化过程热-流-固多场强耦合数值仿真
Numerical simulation of heat-flow-solid multi-field strong coupling in curing process of variable cross-section composite structures based on the resin flow

DOI: 10.13801/j.cnki.fhclxb.20170915.001

Keywords: 复合材料结构,固化过程,树脂流动,多场强耦合,数值仿真
composite structure
,curing process,resin flow,multi-field coupling,numerical simulation

Full-Text   Cite this paper   Add to My Lib

Abstract:

在考虑树脂流动对固化温度场影响的基础上,将树脂流动引入经典热-化学模型,并在考虑了固化过程材料性能时变特性条件下,建立了复合材料热-流-固多场强耦合有限元模型。通过对比文献中未考虑树脂流动对温度场的影响,本文所建模型温度场较实际结果的最大温差更低,厚度密实精度更高,模型可靠性更好。基于所建热-流-固强耦合有限元模型,对变截面复合材料结构固化过程进行数值仿真。研究发现,变截面复合材料结构较厚区域存在明显温度场、固化度场及树脂流场分布梯度,纤维体积分数分布不均性较大,这与结构不同区域的厚度、固化过程温度传递滞后及局部树脂流动受固化效应不同步产生的影响有关。变截面复合材料结构厚度由3.52 mm增加至42.24 mm,截面最大温差由0.3℃增加到34.3℃,纤维体积分数分布不均匀性由0.1%增加到1.3%。 On the basis of considering the influence of resin flow on the curing temperature field, the resin flow was introduced into the classical thermo chemical model. In addition, in consideration of the time-varying characteristics of material properties during curing process, the heat-fluid-solid multi-field strongly coupled finite element model was established. It can be found through the comparison with the references in which the effect of resin flow on the temperature field is not considered, the maximum temperature difference is lower, the thickness accuracy is higher, and the model reliability is better. Based on the established heat-fluid-solid strongly coupled finite element model, the curing process of composite structure with variable thickness section was numerically simulated. It is found that the obvious distribution gradient of temperature field, curing degree field and resin flow field exists in the thicker composite structure, and the distribution of fiber volume fraction is uneven. This is related to the structure thickness, the temperature transfer lag of different zones and the influence of the local resin flow on the effects of curing. With the thickness of variable cross-section composite structures increasing from 3.52 mm to 42.24 mm, the maximum temperature increases from 0.3℃ to 34.3℃, and the nonuniformity of the fiber distribution increases from 0.1% to 1.3%. 国家重点基础研究发展计划(2014CB046502);湖南科技大学博士科研启动资金(E51782)

References

[1]  LI S J, ZHAN L H, CHEN R, et al. The influence of cure pressure on microstructure, temperature field and mechanical properties of advanced polymer-matrix composite laminates[J]. Fibers and Polymers, 2014, 15(11):2404-2409.
[2]  MUKHERJEE A, VARUGHESE B. Design guidelines for ply drop-off in laminated composite structures[J]. Compo-sites Part B:Engineering, 2011, 32(2):153-164.
[3]  SHIN D D, HAHN H T. Compaction of thick composites:Simulation and experiment[J]. Polymer Composites, 2004, 25(1):49-59.
[4]  顾轶卓, 李敏, 李艳霞, 等. 飞行器结构用复合材料制造技术与工艺理论进展[J]. 航空学报, 2015, 36(8):2773-2797. GU Yizhuo, LI Min, LI Yanxia, et al. Process on manufacturing technology and process theory of aircraft composite structure[J]. Acta Aseronautica et Astronautica Sinica, 2015, 36(8):2773-2797(in Chinese).
[5]  LOOS A C, MACRAE J D. A process simulation model for the manufacture of a blade-stiffened panel by the resin film infusion process[J]. Composites Science and Technology, 1996, 56(3):273-289.
[6]  BLEST D C, MCKEE S, ZULKIFLE A K, et al. Curing simulation by autoclave resin infusion[J]. Composites Science and Technology, 1999, 59(16):2297-2313.
[7]  ABDELAL G F, ROBOTHAM A, CANTWELL W. Autoclave cure simulation of composite structures applying implicit and explicit FE techniques[J]. International Journal of Mechanics and Materials in Design, 2013, 9(1):55-63.
[8]  元振毅, 王永军, 张跃, 等. 基于材料性能时变特性的复合材料固化过程多场耦合数值模拟[J]. 复合材料学报, 2015, 32(1):167-175. YUAN Zhenyi, WANG Yongjun, ZHANG Yue, et al. Multi-field coupled numerical simulation for curing process of composites with time-dependent properties of materials[J]. Acta Materiae Compostae Sinica, 2015, 32(1):167-175(in Chinese).
[9]  任明法, 刘长志, 丛杰, 等. 纤维缠绕复合材料固化成型中纤维密实过程数值模拟[J]. 玻璃钢/复合材料, 2016(8):5-12. REN Mingfa, LIU Changzhi, CONG Jie, et al. Numerical simulation of fiber compaction process of fiber winding composites in curing process[J]. FRP/CM, 2016(8):5-12(in Chinese).
[10]  BEHZAD T, SAIN M. Finite element modeling of polymer curing in natural fiber reinforced composites[J]. Composites Science and Technology, 2007, 67(7):1666-1673.
[11]  DAVE R. A unified approach to modeling resin flow during composite processing[J]. Journal of Composite Materials, 1990, 24(1):22-41.
[12]  YOUNG W B. Consolidation and cure simulation for laminated composites[J]. Polymer Composites, 1996, 17(1):142-148.
[13]  HARPER B D, WEITSMAN Y. On the effects of environmental conditioning on residual stresses in composite laminates[J]. International Journal of Solids and Structures, 1985, 21(8):907-926.
[14]  GUTOWSKI T G, MORIGAKI T, ZHONG C. The consolidation of laminate composites[J]. Journal of Composite Materials, 1987, 21(2):172-188.
[15]  GUTOWSKI T G, CAI Z, BAUER S, et al. Consolidation experiments for laminate composites[J]. Journal of Composite Materials, 1987, 21(7):650-669.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133