全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2017 

再生PET纤维/PP复合材料的结构及力学性能
Structure and mechanical property of recycled PET fiber/PP composite

DOI: 10.13801/j.cnki.fhclxb.20161020.002

Keywords: 再生纤维,PET纤维,聚丙烯,复合材料,热压成型
recycled fiber
,PET fiber,polypropylene,composite,hot pressing molding

Full-Text   Cite this paper   Add to My Lib

Abstract:

为满足环境保护和可持续发展的需要,废弃无纺布的回收再利用已经成为材料领域的又一研究热点。本文以废弃无纺布为研究对象制得再生聚对苯二甲酸乙二醇酯(PET)纤维,通过热压成型技术制备不同纤维含量的PET/聚丙烯(PP)复合材料。综合利用SEM、DSC、XRD、拉伸性能测试等手段对PET/PP复合材料的结构和性能进行了研究。结果表明:低含量的PET纤维均匀分散在PP基体中,与基体间界面结合紧密;PET纤维的异相成核作用促进了PP分子链的结晶,提高了结晶度,使晶粒细化;这些微结构的变化有利于PET/PP复合膜力学性能的提高,当PET纤维含量仅为0.1%时,PET/PP复合膜的拉伸强度提高了25.99%,断裂韧性提高了61.96%。 For environmental protection and sustainable development, the recycling and reusing of wasted non-woven fabrics has become a hot research topic in the field of materials. In this thesis, the recycled polyethylene terephthalate (PET) fiber was made from wasted non-woven fabrics, which was used to prepare PET/polypropylene (PP) composites with different fiber content by a hot pressing molding technique. A combination of SEM, DSC, XRD and tensile test was performed to provide a more comprehensive analysis of the structure and mechanical property of the PET/PP composites. The main results are as follows: the recycled PET fiber can be well dispersed in PP matrix at low content, and the interfacial adhesion between them is strong. Crystallinzation of PP molecular chain can be promoted with the addition of PET fiber owing to heterogeneous nucleation effect. Moreover, PET fiber is of advantage to increase the degree of crystallinity and grain refinement of PP, which can improve the mechanical property of the PET/PP composites. When the PET fiber content is only 0.1%, the tensile strength of the PET/PP composites is increased by 25.99% and the toughness thereof increased by 61.96%. 国家自然科学基金(51173171),河南工程学院博士基金(D2015018)

References

[1]  周发明, 杨中开, 唐世君, 等. 再生聚酯及其纤维的结构性能研究[J]. 合成纤维工业, 2014, 37(1): 13-16. ZHOU F M, YANG Z K, TANG S J, et al. Structure and properties of recycled polyester and its fibers[J]. China Synthetic Fiber Industry, 2014, 37(1): 13-16 (in Chinese).
[2]  JAIN S, CHATTOPADHYAY S, JACKERAY R, et al. Surface modification of polyacrylonitrile fiber for immobilization of antibodies and detection of analyte[J]. Analytica Chimica Acta, 2009, 654(2): 103-110.
[3]  沈经纬, 黄文艺, 左胜武, 等. PP/PET原位成纤复合材料的增强效应[J]. 复合材料学报, 2004, 21(4): 33-39. SHEN J W, HUANG W Y, ZUO S W, et al. Reinforcing effect of PP/PET in-situ fiberized composites[J]. Acta Materiae Compositae Sinica, 2004, 04: 33-39 (in Chinese).
[4]  徐祥华, 曹庆波. 再生PET纤维生产技术的探讨[J]. 聚酯工业, 2013, 26(4): 32-34. XU X H, CAO Q B. Discussion on regeneration PET fiber production technique[J]. Polyester Industry, 2013, 26(4): 32-34 (in Chinese).
[5]  钱伯章. 我国再生PET纤维的展望[J]. 聚酯工业, 2010, 23(4): 14-15. QIAN B Z. The development of regeneration PET fiber in China[J]. Polyester Industry, 2010, 23(4): 14-15 (in Chinese).
[6]  张东辉. 木质纤维/PP复合材料模压成型工艺及其性能研究[D]. 南京: 南京农业大学, 2009. ZHANG D H. Study on the molding process and properties of PP composites filled with lignocellulose[D]. Nanjing: Nanjing Agricultural University, 2009 (in Chinese).
[7]  张晨夕. 苘麻纤维/PE复合材料热压成型及性能研究[D]. 哈尔滨: 东北林业大学, 2012. ZHANG C X. Piemarker fiber/PE composite by hot-pressing and performance[D]. Harbin: Northeast Forestry University, 2012 (in Chinese).
[8]  李通, 董成良, 霍云, 等. 不同成型温度下PP/PET纤维/GF复合材料的结构与性能[J]. 塑料工业, 2015, 43(4): 83-86. LI T, DONG C L, HUO Y, et al. Morphology and properties of PP/PET fiber/GF composites at different molding temperatures[J]. China Plastics Industry, 2015, 43(4): 83-86 (in Chinese).
[9]  ASGARI M, MASOOMI M. Thermal and impact study of PP/PET fiber composites compatibilized with glycidyl methacrylate and maleic anhydride[J]. Composites Part B: Engineering, 2012, 43(3): 1164-1170.
[10]  FRIEDRICH K, JACOBS O. On wear synergism in hybrid composites[J]. Composites Science and Technology, 1992, 43(1): 71-84.
[11]  严文聪, 曾金芳, 王斌. 纤维混杂复合材料研究进展[J]. 化工新型材料, 2011, 39(6): 30-33. YAN W C, ZENG J F, WANG B. The progress in fibers hybrid composites[J]. New Chemical Materials, 2011, 39(6): 30-33 (in Chinese).
[12]  WAN Y Z, CHEN G C, LI Q Y, et al. Characterization of three-dimensional braided carbon/Kevlar hybrid composites for orthopedic usage[J]. Materials Science and Engineering: A, 2005, 398 (1-2): 227-232.
[13]  THWE M M, LIAO K. Effects of environmental aging on the mechanical properties of bamboo-glass fiber reinforced polymer matrix hybrid composites[J]. Composites Part A: Applied Science and Manufacturing, 2002, 33(1): 43-52.
[14]  American Society for Testing and Materials International. Standard test method for tensile properties of plastics: ASTM D638—2010[S]. West Conshohocken: ASTM International, 2010.
[15]  BLAKE R, GUNKO Y K, COLEMAN J, et al. A generic organometallic approach toward ultra-strong carbon nanotube polymer composites[J]. Journal of the American Chemical Society, 2004, 126(33): 10226-10227.
[16]  ZHAO P, WANG K, YANG H, et al. Excellent tensile ductility in highly oriented injection-molded bars of polypropylene/carbon nanotubes composites[J]. Polymer, 2007, 48(19): 5688-5695.
[17]  YANG J H, WANG C Y, WANG K, et al. Direct formation of nanohybrid shish-kebab in the injection molded bar of PP/MWCNTs composite[J]. Macromolecules, 2009, 42(18): 7016-7023.
[18]  LIANG S, WANG K, CHEN D Q, et al. Shear enhanced interfacial interaction between carbon nanotubes and polyethylene and formation of nanohybrid shish-kebabs[J]. Polymer, 2008, 49(23): 4925-4929.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133