|
- 2017
超高分子量聚乙烯架桥纤维与裂缝的交互微观力学
|
Abstract:
使用拉曼光谱研究了架桥纤维与裂缝微观力学,以超高分子量聚乙烯(UHMWPE)纤维为例,将纤维搭桥试样进行微拉伸试验,着重分析架桥纤维的止裂作用和架桥纤维/环氧树脂界面的应力分布,并对不同位置架桥试样的裂缝扩展速度和应力分布进行分析,并进一步运用剪切滞后模型,对架桥纤维在不同拉伸载荷下的应力分布进行了拟合分析,结果表明:架桥纤维能够分散部分外载应力,对于裂纹扩展具有显著的止裂作用。在低于UHMWPE纤维最大应变拉伸时,发现在裂缝中心位置处架桥纤维所承受的应力最大,其应力不超过2 GPa,而基体树脂的应力可达到12 GPa,架桥纤维/基体界面的应力传递达不到100%。以UHMWPE为架桥的应力传递模型呈"正抛物线"型,应力分布存在于粘结区、脱粘区和架桥区。 The micro-Raman spectroscopy was used to investigate the micromechanics of the ultrahigh molecular weight polyethylene (UHMWPE) bridging fiber crossing crack. The crack-arrest of the bridging fiber and the stress distribution of the interface between the bridging fibers and epoxy were mainly discussed by the micro-tension test coupled with Raman scanning. The crack propagation speed and the stress distribution of the specimens in different positions were also analyzed, and the shear-lag model was proposed to fit the stress distribution of bridging fibers at different tensile. The results show that bridging fibers, by dispersing partial external stress, can effectively withstand the propagation of crack. When the tensile strain is lower than the maximum strain of the UHMWPE fiber, the maximum stress on the bridging fibers existing at the crack center position, is less than 2 GPa, but the stress in the matrix is up to 12 GPa, which indicate the stress transfer value of fiber/matrix interface is less than 100%. The stress transfer model of UHMWPE bridging fibers is proposed to be parabola shaped, and the stress distribution of UHMWPE fiber exists in three zones, namely the bonded zone, the debonded zone and the bridging zone. 上海市教育委员会科研创新重点项目(14zz069);国家重点研发计划项目(2016YFB0303201)
[1] | 张颖异, 李冰川, 刘发杰.PE-UHMW 抗弹复合材料及其在防护领域中的应用[J].工程塑料应用, 2015, 41(10): 137-140. ZHANG Y Y, LI B C, LIU F J.Research and applications of ultra high molecular weight polyethylene ballistic composites in anti-bullet protection[J].Engineering Plastics Application, 2015, 41(10): 137-140 (in Chinese). |
[2] | LEI Z K, WANG Q, QIU W. Micromechanics of fiber-crack interaction studied by micro-Raman spectroscopy:Bridging fiber[J]. Optics and Lasers in Engineering, 2013, 51(4): 358-363. |
[3] | BENNETT J, YOUNG R.A strength based criterion for the prediction of stable fibre crack-bridging[J].Composites Science and Technology, 2008, 68(6): 1282-1296. |
[4] | LACROIX T, TILMANS B, KEUNINGS R, et al. Modelling of critical fibre length and interfacial debonding in the fragmentation testing of polymer composites[J].Composites Science and Technology, 1992, 43(4): 379-387. |
[5] | LIU D, RINALDI C, FLEWITT P E J.Effect of substrate curvature on the evolution of microstructure and residual stresses in EBPVD-TBC[J].Journal of the European Ceramic Society, 2015, 35(9): 2563-2575. |
[6] | 陈师, 石彦平, 吴琪琳.PAN原丝在预氧化及碳化石墨化过程中微观结构的变化研究[J].化工新型材料, 2016, 44(5): 121-123. CHEN S, SHI Y P, WU Q L. Microstructual evolution during pre-oxidation, carbonization and graphitization of PAN fiber[J].New Chemical Materials, 2016, 44(5): 121-123 (in Chinese). |
[7] | YOUNG R J, DENG L, WAFY T Z, et al.Interfacial and internal stress transfer in carbon nanotube based nanocom-posites[J].Journal of Materials Science, 2016, 51(1): 344-352. |
[8] | 任桂知, 邓李慧, 陈淙洁, 等. 碳纳米管拉曼力学传感器的研究进展[J].材料导报, 2014, 28(15): 69-73. REN G Z, DENG L H, CHEN C J, et al. Research progress of CNT-based Raman strain sensors[J].Materials Review, 2014, 28(15): 69-73 (in Chinese). |
[9] | 邓李慧, 陈淙洁, 陈师, 等. 微拉曼光谱研究碳纤维/微滴和聚乙烯纤维/微滴的微观力学行为[J].玻璃钢/复合材料, 2015(1): 23-27. DENG L H, CHEN C J, CHEN S, et al. Micromechanics analysis on fiber/epoxy microdroplet by micro-Raman spectroscopy-carbon fiber and polyethylene fiber[J].Fiber Reinforced Plastics/Composites, 2015(1): 23-27 (in Chinese). |
[10] | 杨序纲. 复合材料界面[M]. 北京:化学工业出版社, 2010:1-40. YANG X G.Interface of composite material[M]. Beijing:Chemical Industry Press, 2010:1-40 (in Chinese). |
[11] | 邓李慧, 陈淙洁, 吴琪琳.纤维搭桥技术在界面微观力学研究中的应用[J].高分子通报, 2015(1): 13-18. DENG L H, CHEN C J, WU Q L. Applications of fiber bridging technique in interfacial micromechanics[J].Polymer Bulletin, 2015(1): 13-18 (in Chinese). |
[12] | HUNG Y C, WITHERS P J.Fibre bridging during high temperature fatigue crack growth in Ti/SiC composites[J]. Acta Materialia, 2012, 60(3): 958-971. |
[13] | 李翠玉, 杨雪, 冯亚男, 等. 不同层数的超高分子量聚乙烯纬平针织复合材料冲击损伤[J]. 复合材料学报, 2015, 32(2): 557-564. LI C Y, YANG X, FENG Y N, et al. Impact damage on ultrahigh molecular weight polyethylenen weft knitted com-posites with different layers[J]. Acta Materiae Compositae Sinica, 2015, 32(2): 557-564 (in Chinese). |
[14] | 陈淙洁, 邓李慧, 吴琪琳.碳纤维微观结构研究进展[J].材料导报, 2014, 28(1): 21-25. CHEN C J, DENG L H, WU Q L.Research progress on microstructures of carbon fibers[J]. Materials Review, 2014, 28(1): 21-25 (in Chinese). |
[15] | 赵刚, 赵莉, 谢雄军.超高分子量聚乙烯纤维的技术与市场发展[J].纤维复合材料, 2011 (1): 50-56. ZHAO G, ZHAO L, XIE X J.Ultra high molecular weight polyethylene fiber material technology and market development prospect[J].Fiber Composites, 2011(1): 50-56 (in Chinese). |
[16] | ZHANG G, SUWATNODOM P, JU J W.Micromechanics of crack bridging stress-displacement and fracture energy in steel hooked-end fiber reinforced cementitious composites[J]. International Journal of Damage Mechanics, 2013, 22(6): 829-859. |
[17] | CANAL L P, PAPPAS G, BOTSIS J.Large scale fiber bridging in mode I intralaminar fracture: An embedded cell approach[J].Composites Science and Technology, 2016, 126: 52-59. |
[18] | MIRZAEI B, SINHA A, NAIRN J A.Measuring and modeling fiber bridging:Application to wood and wood composites exposed to moisture cycling[J].Composites Science and Technology, 2016, 128: 65-74. |
[19] | AFSHAR A, DANESHYAR A, MOHAMMADI S.XFEM analysis of fiber bridging in mixed-mode crack propagation in composites[J].Composite Structures, 2015, 125: 314-327. |
[20] | MA L, LIU D.Delamination and fiber-bridging damage analysis of angle-ply laminates subjected to transverse loading[J].Journal of Composite Materials, 2016, 50(22): 3063-3075. |
[21] | LEI Z K, WANG Q, QIU W. Micromechanics of fiber-crack interaction studied by micro-Raman spectroscopy:Broken fiber[J].Optics and Lasers in Engineering, 2013, 51(9): 1085-1091. |
[22] | BENNETT J, YOUNG R.The effect of fibre-matrix adhesion upon crack bridging in fibre reinforced composites[J].Composites Part A:Applied Science and Manufacturing, 1998, 29(9): 1071-1081. |
[23] | VORECHOVSK AYG M, SADILEK V, RYPL R.Probabilistic evaluation of crack bridge performance in fiber reinforced composites[J].Engineering Mechanics, 2013, 20(1): 3-11. |
[24] | PRECHTEL M, LEUGERING G, STEINMANN P, et al. Towards optimization of crack resistance of composite materials by adjustment of fiber shapes[J].Engineering Fracture Mechanics, 2011, 78(6): 944-960. |
[25] | 鲍宏琛, 刘广彦.纤维增强复合材料层合板缺口尺寸及形状效应数值模拟[J]. 复合材料学报, 2017, 34(5): 987-995. BAO H C, LIU G Y.Numerical simulation on notch size and shape effects of fiber-reinforced composite laminates[J]. Acta Materiae Compositae Sinica, 2017, 34(5): 987-995 (in Chinese). |
[26] | 李秋漳. 复合材料层合板缺口强度的CDM三维数值模型[D].南京:南京航空航天大学, 2016. LI Q Z. CDM Three-dimensional numerical model for the notched strength of composite laminates[D].Nanjing: Nanjing University of Aeronautics and Astronautics, 2016 (in Chinese). |
[27] | REN G, CHEN C, DENG L, et al.Microstructural heterogeneity on the cylindrical surface of carbon fibers analyzed by Raman spectroscopy[J].New Carbon Materials, 2015, 30(5): 476-480. |
[28] | BOKOBZA L, BRUNEEL J L, COUZI M.Raman spectroscopy as a tool for the analysis of carbon-based materials (highly oriented pyrolitic graphite, multilayer graphene and multiwall carbon nanotubes) and of some of their elastomeric composites[J].Vibrational Spectroscopy, 2014, 74: 57-63. |