|
- 2016
功能化改性还原氧化石墨烯-碳纳米管/热塑性聚氨酯复合材料膜的制备及性能
|
Abstract:
为提高热塑性聚氨酯(TPU)的阻隔及抗静电性能,首先,向功能化改性还原氧化石墨烯(FRGO)中加入原始碳纳米管(CNTs),并通过非共价改性制得在N, N-二甲基甲酰胺(DMF)中均匀分散的杂化粒子FRGO-CNTs;然后,在涂膜机上通过溶液涂覆法制备了FRGO-CNTs/TPU复合材料膜;最后,利用FTIR、XRD、XPS、FE-SEM、TG、氧气透过仪、高阻计及万能试验机对FRGO-CNTs/TPU复合材料膜的结构和性能进行了表征。结果表明:FRGO与CNTs之间通过π-π共轭作用发挥协同效应,并且所制备的FRGO-CNTs与TPU基体的相容性较好;当FRGO-CNTs含量(以TPU为基准)为2.0wt%时,复合材料膜的热分解温度提高了49℃,氧气透过率下降了53.7%;大比表面积的FRGO与高长径比的CNTs能在TPU基体中构建导电网络;当FRGO-CNTs含量仅为0.8wt%时, FRGO-CNTs/TPU复合材料膜的体积电阻率就能下降7个数量级。与此同时,随FRGO-CNTs含量的增加,复合材料膜的拉伸强度和断裂伸长率均先上升而后下降。 In order to improve the barrier and antistatic properties of thermoplastic polyurethane (TPU), original carbon nanotubes (CNTs) were added into functional modification reduced graphene oxide (FRGO), and hybrid particles FRGO-CNTs which were uniformly dispersed in N, N-dimethylformamide (DMF) were prepared by non-covalent modification firstly. Then, FRGO-CNTs/TPU composite films were fabricated by solution coating method on the coating machine. Finally, the structures and properties of FRGO-CNTs/TPU composite films were characterized by FTIR, XRD, XPS, FE-SEM, TG, oxygen transmission rate tester, high resistance meter and universal testing machine. The results demonstrate that FRGO and CNTs produce synergistic effect through π-π conjugation, and the prepared FRGO-CNTs show good compatibility with TPU matrix. When FRGO-CNTs content (using TPU as reference) is 2.0wt%, the thermal decomposition temperature of composite film increases by 49℃, and the oxygen transmission rate decreases by 53.7%. The FRGO with large specific surface area and the CNTs with high length to diameter ratio can build the conductive network in TPU matrix. When FRGO-CNTs content is only 0.8wt%, the volume resistivity of FRGO-CNTs/TPU composite film declines by as much as 7 orders of magnitude. Meanwhile, with the FRGO-CNTs content increasing, the tensile strength and elongation at break of composite films both rise at first and then go down. 福建省科技计划(2015H0016)
[1] | RAGHU A V, LEE Y R, JEONG H M, et a1. Preparation and physical properties of waterborne polyurethane/functionalized graphene sheet nanocomposites[J]. Macromolecular Chemistry and Physics, 2008, 209(24):2487-2493. |
[2] | 卫保娟, 郑伟玲, 肖潭, 等. 混杂功能化多壁碳纳米管/环氧树脂复合材料的制备及性能[J]. 复合材料学报, 2011, 28(5):27-33. WEI B J, ZHENG W L, XIAO T, et al. Preparation and properties of hybrid functionalized multi-walled carbon nanotube/epoxy resin composites[J]. Acta Materiae Compositae Sinica, 2011, 28(5):27-33(in Chinese). |
[3] | XIANG C, LU W, ZHU Y, et al. Carbon nanotube and graphene nanoribbon-coated conductive Kevlar fibers[J]. ACS Applied Materials and Interfaces, 2011, 4(1):131-136. |
[4] | SANTERRE J, WOODHOUSE K, LAROCHE G, et al. Understanding the biodegradation of polyurethanes:From classical implants to tissue engineering materials[J]. Biomaterials, 2005, 26(35):7457-7470. |
[5] | LEE C, WEI X, KYSAR J W. Measurement of the elastic properties and intrinsic strength of monolayer graphene[J]. Science, 2008, 321(5887):385-388. |
[6] | DU X, SKSCHKO I, BARKER A. Approaching ballistic transport in suspended grahene[J]. Nature Nanotechnolog, 2008, 3(8):491-495. |
[7] | STANKOVICH S, DIKIN D A, DOMMETT G H B, et al. Graphene-based composite material[J]. Nature, 2006, 442(7100):282-286. |
[8] | BIAN J, WEI X W, LIN H L, et a1. Comparative study on the exfoliated expanded graphite nano sheet-PES composites prepared via different compounding method[J]. Journal of Applied Polymer Science, 2012, 124(5):3547-3557. |
[9] | BIAN J, WEI X W, LIN H L, et a1. PP/PP-g-MAH/layered expanded graphite oxide nanocomposites prepared via masterbatch process[J]. Journal of Applied Polymer Science, 2013, 128(1):600-610. |
[10] | 全国塑料制品标准化技术委员会. 塑料薄膜和薄片气体透过性试验方法压差法:GB/T 1038-2000[S]. 北京:中国标准出版社, 2000. Committee of National Standardization for Plastics Products. Plastic-Film and sheeting-Determination of gas transmission-Differential-pressure method:GB/T 1038-2000[S]. Beijing:Standards Press of China, 2000(in Chinese). |
[11] | 全国塑料制品标准化技术委员会. 塑料拉伸性能的测定第3部分:薄膜和薄片的试验条件:GB/T 1040.3-2006[S]. 北京:中国标准出版社, 2006. Committee of National Standardization for Plastics Products. Plastic-Determination of tensile properties-Part 3:Test conditions for films and sheets:GB/T 1040.3-2006[S]. Beijing:Standards Press of China, 2006(in Chinese). |
[12] | KAVITA S, VIJAYENDER B, PRIYANKA S, et al. Amine functionalized graphene oxide/CNT nanocomposite for ultrasensitive electrochemical detection of trinitrotoluene[J]. Journal of Hazardous Materials, 2013, 248-249:322-328. |
[13] | TIEN H W, HUANG Y L, YANG S Y, et a1. Graphene nanosheets deposited on polyurethane films by self-assembly for preparing transparent, conductive films[J]. Journal of Materials Chemistry, 2011, 21(38):14876-14883. |
[14] | GRENIER S, SANDIG M, MEQUANINT K. Polyurethane biomaterials for fabricating 3D porous scaffolds and supporting vascular cells[J]. Journal of Biomedical Materials Research Part A, 2007, 82(4):802-809. |
[15] | GEIM A K, MACDONALD A H. Graphene:Exploring carbon flatland[J]. Physics Today, 2007, 60(8):35-41. |
[16] | YU R, FENG L, HUI M C. Tension fatigue behavior of unidirectional single walled carbon nanotube reinforced epoxy composite[J]. Carbon, 2003, 41(11):2177-2179. |
[17] | KOEMER H, LIU W, ALEXANDER M, et a1. Deformation-morphology correlations in electrically conductive carbon nanotube-thermoplastic polyurethane nanocomposites[J]. Po-lymer, 2005, 46(12):4405-4420. |
[18] | KIM H J, YOUNG G. Polylactide/exfoliated graphite nanocomposites with enhanced thermal stability, mechanical modulus, and electrical conductivity[J]. Journal of Polymer Science Part B:Polymer Physics, 2010, 48(8):850-858. |
[19] | ZHANG X, LIANG G, CHANG J, et al. The origin of the electric and dielectric behavior of expanded graphite-carbon nanotube/cyanate ester composites with very high dielectric constant and low dielectric loss[J]. Carbon, 2012, 50(14):4995-5007. |