|
- 2016
多层介孔纳米MgO/低密度聚乙烯复合材料的制备及其绝缘性能
|
Abstract:
塑料高压直流电缆在电力输运中,绝缘层容易发生电子及空穴注入并局部积聚,形成空间电荷包,长期运行容易引发绝缘失效。为此,抑制电子及空穴的注入、积聚,防止空间电荷包的产生是制备塑料高压直流电缆的关键技术。通过制备多层介孔结构纳米MgO,采用低沸点溶剂法,实现了纳米MgO在低密度聚乙烯(LDPE)中的均匀分散。研究了1wt%纳米MgO/LDPE复合材料的空间电荷行为、直流击穿强度、热刺激电流及介电特性。结果表明:添加1wt%纳米MgO的LDPE在70 kV/mm电场下有效地抑制了空间电荷积聚,提高了直流击穿强度,降低了介电常数;热刺激电流研究表明纳米MgO形成了新的陷阱,有效捕获了载流子,形成独立电场,避免了局部有效电场,形成新的势垒,抑制了电极载流子的注入,最终抑制了空间电荷积聚。 Polymer high-voltage direct current cables accompany with the injection of electrons and holes of insulating layer which accumulated in local polymer will form space charge packet and trigger insulation breakdown in electric power transmission. Therefore, the key technology of preparing polymer high-voltage direct current cables is to suppress the injection and accumulation of electrons and holes, prevent the formation of space charge packet. By preparing the multi-layer mesoporous structure nano MgO, uniform dispersion of nano MgO in low density polyethylene (LDPE) was realized by using the low boiling point solvent method. The characteristics of space charge, direct current breakdown strength, thermally stimulated current and dielectric properties of 1wt% nano MgO/LDPE composites were studied. The results reveal that adding 1wt% nano MgO into LDPE can effectively suppress space charge accumulation under the 70 kV/mm electric field, improving direct current breakdown strength, decreasing the dielectric permittivity. Thermally stimulated current research shows that nano MgO induces new traps, effectively captures charge carriers and independent electrical field forms, avoids local effective electrical field, forms a new barrier, suppresses the injection of electrode carrier, and suppresses space charge accumulation eventually. 国家自然科学基金(51207009);国家"973"计划(2014CB239503);北京市科技计划(Z13110300590000)
[1] | ZHANG L, ZHOU Y X, HUANG M, et al. Effect of nanoparticle surface modification on charge transport characteristics in XLPE/SiO2 nanocomposites[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2014, 21(2):424-433. |
[2] | MIZUTANI T. Electrical properties of polymers:Space-charge behaviour in insulating polymers under high-voltage direct current[J]. Polymer International, 2002, 51(11):1164-1171. |
[3] | YANG C, PATRICIA C I, KARIM Y. The future of nanodielectrics in the electrical power industry[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2004, 11(5):797-807. |
[4] | 王霞, 吴超一, 何华琴, 等. 茂金属聚乙烯改性低密度聚乙烯中空间电荷的机理研究[J]. 中国电机工程学报, 2006, 26(7):158-162. WANG X, WU C Y, HE H Q, et al. The mechanism of space charge suppression in LDPE modified by metallocene[J]. Proceedings of the CSEE, 2006, 26(7):158-162(in Chinese). |
[5] | TASTUO T, YUJI H, YASUHIRO T, et al. Space charge trapping in electrical potential well caused by permanent and induced dipoles for LDPE/MgO nanocomposite[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2008, 15(1):152-160. |
[6] | 周宏, 张玉霞, 范勇, 等. 片状纳米Al2O3/环氧树脂复合材料的制备及性能[J]. 复合材料学报, 2014, 31(5):1142-1147. ZHONG H, ZHANG Y X, FAN Y, et al. Preparation and properities of Al2O3 nanosheets/epoxy composites[J]. Acta Materiae Compositae Sinica, 2014, 31(5):1142-1147(in Chinese). |
[7] | LING Z X, ZHENG M B, DU Q L. Synthesis of mesoporous MgO nanoplate by an easy solvothermal-annealing method[J]. Solid State Sciences, 2011, 13(12):2073-2079. |
[8] | HOLE S. Behind space charge distribution measurements[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2012, 19(4):1208-1214. |
[9] | TU Y P, WANG Q, HE J, et al. TSC characteristics of AC aged ZnO varistors[J]. Technological Sciences, 2013, 56(3):677-682. |
[10] | 李伟. 两种油浸纸直流电缆热老化下的空间电荷特性[D]. 重庆:重庆大学, 2011. LI W. Space charge characteristics of two kinds of oil paper dc cables under different thermal aging time[D]. Chongqing:Chongqing University, 2011(in Chinese). |
[11] | 陈铮铮, 赵健康, 欧阳本红, 等. 直流与交流交联聚乙烯电缆料绝缘特性的差异及其机理分析[J]. 高电压技术, 2014, 40(9):2644-2652. CHEN Z Z, ZHAO J K, OUYANG B H, et al. Difference in insulation characteristics and mechanism between AC and DC XLPE cables material[J]. High Voltage Engineering, 2014, 40(9):2644-2652(in Chinese). |
[12] | 程羽佳, 郭宁, 王若石. 纳米ZnO和纳米MMT对低密度聚乙烯介电性能的影响[J]. 复合材料学报, 2015, 32(1):94-100. CHENG Y J, GUO N, WANG R S. Effects of nano-ZnO and nano-montmorill properties of low density polyethylene[J]. Acta Materiae Compositae Sinica, 2015, 32(1):94-100(in Chinese). |
[13] | JU S, ZHANG H, CHEN M J, et al. Improved electrical insulating properties of LDPE based nanocomposite:Effect of surface modification of magnesia nanoparticles[J]. Composites Part A:Applied Science and Manufacturing, 2014, 66:183-192. |
[14] | 周远翔, 赵健康, 刘睿, 等. 高压/超高压电力电缆关键技术分析及展望[J]. 高电压技术, 2014, 40(9):2593-2612. ZHOU Y X, ZHAO J K, LIU R, et al. Key technical analysis and prospect of high voltage and extra-high voltage power cable[J]. High Voltage Engineering, 2014, 40(9):2593-2612(in Chinese). |
[15] | HOZUMI N, TAKADA T, SUZUKI H, et al. Space charge behavior in XLPE cable insulation under 0.2-1.2 MV/cm dc fields[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 1998, 5(1):82-90. |
[16] | NORIKAZU F, YOSHIMICHI O. Comparison of nano-structuration effects in polypropylene among four typical dielectric properties[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2010, 17(3):671-677. |
[17] | HUANG X Y, LIU F, JIANG P K. Effect of nanoparticle surface treatment on morphology, electrical and water treeing behavior of LLDPE composites[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2010, 17(6):1697-1704. |
[18] | KAZUKI T, HIROSHI S, MAKOTO H, et al. Research and development of +250 kV DC XLPE cables[J]. IEEE Transactions on Power Delivery, 1998, 13(1):7-16. |
[19] | ZHOU Y X, ZHANG L, SHA Y C, et al. Numerical analysis of space charge characteristics in low-density polyethylene nanocomposite under external DC electric field[J]. High Voltage Engineering, 2013, 39(8):1813-1820. |
[20] | ZHANG L, ZHOU Y X, TIAN J H, et al. Experiment and simulation of space charge suppression in LDPE/MgO nanocomposite under external DC electric field[J]. Journal of Electrostatics, 2014, 72(4):252-260. |
[21] | TAKEAD T, HOZUMI N, SUZUKI H, et al. Space charge behavior in full-size 250 kV DC XLPE cables[J]. IEEE Transactions on Power Delivery, 1998, 13(1):28-39. |
[22] | YAMANAKA T, MARUYAM S, TANAKA T. The development of DC+/-500 kV XLPE cable in consideration of the space charge accumulation[C]//Proceedings of the 7th International Conference on Properties and Applications of Dielectric Materials. Nagoya:[s.n.], 2003:689-694. |
[23] | 吴锴, 陈曦, 王霞, 等. 纳米粒子改性聚乙烯直流电缆绝缘材料研究[J]. 高电压技术, 2013, 39(1):8-16. WU K, CHEN X, WANG X, et al. Modified low density polyethylene by nano-fills as insulating material of DC cable[J]. High Voltage Engineering, 2013, 39(1):8-16(in Chinese). |
[24] | 吴振升, 叶青, 周远翔, 等. 表面修饰纳米SiO2/XLPE的电导电流和空间电荷特性[J]. 高电压技术, 2014, 40(10):3268-3275. WU Z S, YE Q, ZHOU Y X, et al. Conduction current and space charge characteristics of SiO2/XLPE nanocomposites with nanoparticle surface modification[J]. High Voltage Engineering, 2014, 40(10):3268-3275. |