|
- 2016
颗粒增强复合材料非理想界面刚度和有效模量的理论估计
|
Abstract:
采用内聚力模型(CZM)描述颗粒增强复合材料(PRCs)颗粒/基体非理想界面的力学行为,采用细观力学的Mori-Tanaka(M-T)方法和稀释解方法研究非理想界面刚度对该复合材料有效模量的影响。结果表明:复合材料某一体积含量下的有效模量和其颗粒/基体非理想界面刚度之间存在单调递增的关系曲线。同一复合材料不同体积含量的有效模量和非理想界面刚度关系曲线存在一个临界交点(CP),该点对应的临界界面刚度控制着颗粒体积分数对有效模量的影响。研究了基体和增强相的力学性能以及增强颗粒的尺寸对CP点临界界面刚度的影响。采用有效模量-界面刚度关系曲线,结合实验测得的有效模量,提出了估算PRCs的非理想界面刚度的方法,进而估计了复合材料的宏观有效模量。 The mechanical behavior of imperfect particle/matrix interface in particle-reinforced composites (PRCs) are defined by the cohesive zone model (CZM). Using mesoscopic mechanical Mori-Tanaka (M-T) method and dilute solution method, we studied the effect of imperfect interface stiffness on the effective modulus of composites. Results present that the monotonic increasing relation curves exist between the effective modulus and the particle/matrix imperfect interface stiffness for the composite with a certain volume fraction.The relation curves between the effective modulus and the imperfect interface stiffness with different volume fractions accounting for a certain composites converge to a unique critical point (CP), and the critical interfacial stiffness characterized by CP dominates the way of how volume fraction of particle affects the effective modulus. The effects of mechanical property of matrix and reinforcement phase, reinforced particle size on the critical interfacial stiffness of CP were studied. With effective modulus-interfacial stiffness relation curves and the experimental effective modulus, the estimated method of the imperfect interfacial stiffness for PRCs was proposed. The macro effective modulus of the composites was then predicted. 国家自然科学基金(10972155)
[1] | JUHASZ J. Mechanical properties of glass-ceramic A-W-polyethylene composites:Effect of filler content and particle size[J]. Biomaterials, 2004, 25(6):949-955. |
[2] | LUO A. Processing, microstructure, and mechanical behavior of cast magnesium metal matrix composites[J]. Metallurgical and Materials Transactions A, 1995, 26(9):2445-2455. |
[3] | KWON S C, ADACHI T, ARAKI W, et al. Effect of composing particles of two sizes on mechanical properties of spherical silica-particulate-reinforced epoxy composites[J]. Composites Part B:Engineering, 2008, 39(4):740-746. |
[4] | RAVICHANDRAN K S. Elastic properties of two-phase composites[J]. Journal of the American Ceramic Society, 1994, 77(5):1178-1184. |
[5] | ESHELBY J D. The determination of the elastic field of an ellipsoidal inclusion and related problem[J]. Proceedings of Royal Society London A, 1957, 241:376-396. |
[6] | HILL R. A self-consistent mechanics of composite materials[J]. Journal of the Mechanics and Physics of Solids, 1965, 13(4):213-222. |
[7] | CHRISTENSEN R, LO K. Solutions for effective shear properties in three phase sphere and cylinder models[J]. Journal of the Mechanics and Physics of Solids, 1979, 27(4):315-330. |
[8] | MORI T, TANAKA K. Average stress in matrix and average elastic energy of materials with misfitting inclusions[J]. Actametallurgica, 1973, 21(5):571-574. |
[9] | BENVENISTE Y. A new approach to the application of Mori-Tanaka's theory in composite materials[J]. Mechanics of Materials, 1987, 6(2):11. |
[10] | HASHIN Z, SHTRIKMAN S. A variational approach to the theory of the elastic behaviour of multiphase materials[J]. Journal of the Mechanics and Physics of Solids, 1963, 11(2):127-140. |
[11] | JONES R M. Mechanics of composite materials[M]. London:Taylor & Francis London Press Inc, 1975:61. |
[12] | AFFDL J, KARDOS J. The Halpin-Tsai equations:A review[J]. Polymer Engineering & Science, 1976, 16(5):344-352. |
[13] | WU T T. On the parametrization of the elastic moduli of two-phase materials[J]. Journal of Applied Mechanics, 1965, 32:211. |
[14] | LIELENS G, PIROTTE P, COUNIOT A, et al. Prediction of thermo-mechanical properties for compression moulded composites[J]. Composites Part A:Applied Science and Manufacturing, 1998, 29(1):63-70. |
[15] | HASHIN Z. Thin interphase/imperfect interface in elasticity with application to coated fiber composites[J]. Journal of the Mechanics and Physics of Solids, 2002, 50(12):2509-2537. |
[16] | ZHU X, CHEN W, HUANG Z, et al. Fast multipole boundary element analysis of 2D viscoelastic composites with imperfect interfaces[J]. Science China Technological Sciences, 2010, 53(8):2160-2171. |
[17] | WACKER G, BLEDZKI A K, CHATE A. Effect of interphase on the transverse Young's modulus of glass/epoxy composites[J]. Composites Part A:Applied Science and Manufacturing, 1998, 29(5-6):619-626. |
[18] | BARENBLATT G. The mathematical theory of equilibrium cracks in brittle fracture[J]. Advances in Applied Mechanics, 1962, 7(1):55-129. |
[19] | TAN H, HUANG Y, LIU C, et al. The uniaxial tension of particulate composite materials with nonlinear interface debonding[J]. International Journal of Solids and Structures, 2007, 44(6):1809-1822. |
[20] | TAN H, HUANG Y, LIU C, et al. The Mori-Tanaka method for composite materials with nonlinear interface debonding[J]. International Journal of Plasticity, 2005, 21(10):1890-1918. |
[21] | 喻明, 朱平, 马颖琦. 考虑界面效应的复合泡沫塑料弹性性能数值仿真预测与试验研究[J]. 复合材料学报, 2013, 30(3):225-232. YU M, ZHU P, MA Y Q. Experimental study and numerical prediction of the elastic properties of syntactic foams considering the interfacial effect[J]. Acta Materiae Compositae Sinica, 2013, 30(3):225-232 (in Chinese). |
[22] | 王振清, 雷红帅, 周博, 等. 基于内聚力模型的形状记忆合金短纤维增强树脂基复合材料的模拟分析[J]. 复合材料学报, 2012, 29(5):236-243. WANG Z Q, LEI H S, ZHOU B, et al. Simulation and analysis on short-cut shape memory alloy reinforced epoxy composite based on cohesive zone model[J]. Acta Materiae Compositae Sinica, 2012, 29(5):236-243 (in Chinese). |
[23] | NEEDLEMAN A, TVERGAARD V. An analysis of ductile rupture modes at a crack tip[J]. Journal of the Mechanics and Physics of Solids, 1987, 35(2):151-183. |
[24] | TIMOSHENKO S, GOODIER J, ABRAMSON H N. Theory of elasticity[J]. Journal of Applied Mechanics, 1970, 37:888. |
[25] | Mathematica[CP/OL]. Champaign:Wolfram Research Company,2013. |
[26] | TVERGAARD V, HUTCHINSON J W. The influence of plasticity on mixed mode interface toughness[J]. Journal of the Mechanics and Physics of Solids, 1993, 41(6):1119-1135. |
[27] | TAN H, HUANG Y, LIU C, et al. Constitutive behaviors of composites with interface debonding:The extended Mori-Tanaka method for uniaxial tension[J]. International Journal of Fracture, 2007, 146(3):139-148. |
[28] | FU S Y, FENG X Q, LAUKE B, et al. Effects of particle size, particle/matrix interface adhesion and particle loading on mechanical properties of particulate-polymer composites[J]. Composites Part B:Engineering, 2008, 39(6):933-961. |
[29] | MARTIN A, LLORCA J. Mechanical behaviour and failure mechanisms of a binary Mg 6% Zn alloy reinforced with SiC particulates[J]. Materials Science and Engineering:A, 1995, 201(1):77-87. |
[30] | VOIGT W. On the relation between the elasticity constants of isotropic bodies[J]. Annals of Physics and Chemistry, 1889, 274:573-587. |
[31] | REUSS A. A calculation of the bulk modulus of polycrystalline materials[J]. Math Meth, 1929, 9:49-58. |
[32] | PINDERA M J, KHATAM H, DRAGO A S, et al. Micromechanics of spatially uniform heterogeneous media:A critical reviewand emerging approaches[J]. Composites Part B:Engineering, 2009, 40(5):349-378. |