|
- 2016
加载循环数对2D针刺C/SiC复合材料疲劳剩余强度的影响
|
Abstract:
为研究陶瓷基复合材料的低周疲劳失效机理,通过试验和细观分析对其疲劳特性进行了探讨。研究了室温下加载循环数对2D针刺C/SiC复合材料拉-拉疲劳剩余强度的影响,并采用光学显微镜和扫描电子显微镜对该材料的断口形貌和微观结构进行了观察。结果表明:2D针刺C/SiC复合材料具有较好的抗疲劳特性,在85%极限拉伸强度(UTS)载荷下的循环数超过106;随着加载循环数的增加,剩余强度先增大然后下降。断口分析表明:纤维拔出长度随着加载循环数的增加而增加,说明在疲劳加载过程中,纤维/基体的界面结合强度降低,减缓了材料内部受力的不均匀性,提高了材料的承载能力,使2D针刺C/SiC复合材料出现了疲劳强化现象。 In order to study the failure mechanism under low cycle fatigue loading of ceramic matrix composites, their fatigue behavior was investigated through tests and mesoscopre analysis. The effects of loading cycles on the residual strength after tension-tension fatigue were studied for 2D needled C/SiC composites at room temperature. The fracture morphology and microstructure of the materials were observed by optical microscope and scanning electron microscope. The results show that the 2D needled C/SiC composites present an outstanding fatigue resistance as the loading cycle is over 106 cycles while loading at level of 85% ultimate tensile strength (UTS). With the increase of loading cycles, the residual strength first increases then declines. The fracture analysis shows that the length of pull-out fibers increases as loading cycle increase, which means that in the process of fatigue loading, the bonding strength of fiber/matrix interface declines, which can eliminate the stress nonuniformity in materials and enhance the bearing capacity of the composites, and result in the fatigue strengthening phenomenon of 2D needled C/SiC composites. 国家自然科学基金(51105195,31200451);中央高校基本科研业务费专项资金(NZ2014402,NS2013022);南京航空航天大学校博士学位论文创新与创优基金(BCXJ14-02)
[1] | WANG M, LAIRD C. Characterization of microstructure and tensile behavior of a cross-woven C-SiC composite[J]. Acta Materialia, 1996, 44(4):1371-1387. |
[2] | MALL S, WEIDENAAR W A. Tension-compression fatigue behaviour of fibre-reinforced ceramic matrix composite with circular hole[J]. Composites, 1995, 26(9):631-636. |
[3] | 栾新刚, 成来飞, 张钧, 等. 气氛与应力对3D C/SiC复合材料热震行为的影响[J]. 复合材料学报, 2010, 27(1):98-103. LUAN X G, CHENG L F, ZHANG J, et al. Effects of atmosphere and stress on the thermal shock damage behaviors of 3D C/SiC composite with thin interlayer[J]. Acta Materiae Compositae Sinica, 2010, 27(1):98-103 (in Chinese). |
[4] | 杜双明, 乔生儒. 基于电阻变化的3D C/SiC复合材料疲劳损伤演化[J]. 复合材料学报, 2011, 28(2):165-169. DU S M, QIAO S R. Damage evolution of 3D C/SiC composite during tension-tension fatigue based on variation of electric resistance[J]. Acta Materiae Compositae Sinica, 2011, 28(2):165-169 (in Chinese). |
[5] | GAO X G, FANG G W, SONG Y D. Hysteresis loop model of unidirectional carbon fiber-reinforced ceramic matrix composites under an arbitrary cyclic load[J]. Composites Part B:Engineering, 2014, 56:92-99. |
[6] | PHILIPPIDIS T, PASSIPOULARIDIS V. Residual strength after fatigue in composites:Theory vs. experiment[J]. International Journal of Fatigue, 2007, 29(12):2104-2116. |
[7] | RUGGLES-WRENN M B, JONES T P. Tension-compression fatigue of a SiC/SiC ceramic matrix composite at 1200℃ in air and in steam[J]. International Journal of Fatigue, 2013, 47:154-160. |
[8] | MEI H, ZHANG L T, XU H, et al. Damage mechanism of a carbon fiber ceramic composite during the step-loading indentation and its effect on the mechanical properties[J]. Composites Part B:Engineering, 2014, 56:142-147. |
[9] | 张立同, 成来飞. 连续纤维增韧陶瓷基复合材料可持续发展战略探讨[J]. 复合材料学报, 2007, 24(2):1-6. ZHANG L T, CHENG L F. Discussion on strategies of sustainable development of continuous fiber reinforced ceramic matrix composites[J]. Acta Materiae Compositae Sinica, 2007, 24(2):1-6 (in Chinese). |
[10] | BUDIANSKY B, EVANS A G, HUTCHINSON J W. Fiber-matrix debonding effects on cracking in aligned fiber ceramic composites[J]. International Journal of Solids and Structures, 1995, 32(3-4):315-328. |
[11] | EVANS A G, ZOK F W, MCMEEKING R M. Fatigue of ceramic matrix composites[J]. Acta Metallurgica et Materialia, 1995, 43(3):859-875. |
[12] | 王锟, 程起有, 郑翔, 等. 平纹编织C/SiC复合材料拉-拉疲劳特性的试验研究[J]. 机械强度, 2010, 32(1):130-133. WANG K, CHENG Q Y, ZHENG X, et al. Experimantal investigation on the tension-tension fatigue characteristics of plain-woven C/SiC composite[J]. Journal of Mechanical Strength, 2010, 32(1):130-133 (in Chinese). |
[13] | 杨福树. 2.5维编织陶瓷基复合材料疲劳行为研究[D]. 南京:南京航空航天大学, 2012. YANG F S. Research on fatigue behavior of 2.5D woven ceramic matrix composites[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2012 (in Chinese). |
[14] | FRUEHMANN R K, DULIEU-BARTON J M, QUINN S. Assessment of fatigue damage evolution in woven composite materials using infra-red techniques[J]. Composites Science and Technology, 2010, 70(6):937-946. |
[15] | MAILLET E, GODIN N, R'MILI M, et al. Analysis of acoustic emission energy release during static fatigue tests at intermediate temperatures on ceramic matrix composites:Towards rupture time prediction[J]. Composites Science and Technology, 2012, 72(9):1001-1007. |
[16] | 孙志刚, 许仁红, 宋迎东. 陶瓷基复合材料低循环拉-拉疲劳寿命预测[J]. 机械工程学报, 2012, 48(12):31-36. SUN Z G, XU R H, SONG Y D. Low cycle tensile-tensile fatigue life prediction of ceramic matrix composites[J]. Journal of Mechanical Engineering, 2012, 48(12):31-36 (in Chinese). |
[17] | 方光武, 高希光, 宋迎东. 单向纤维增强陶瓷基复合材料界面滑移规律[J]. 复合材料学报, 2013, 30(4):101-107. FANG G W, GAO X G, SONG Y D. Interface slip distribution of unidirectional fiber-reinforced ceramic matrix composite[J]. Acta Materiae Compositae Sinica, 2013, 30(4):101-107 (in Chinese). |
[18] | 周海浩, 李克智, 李贺军, 等. 循环加载周期对二维C/C复合材料弯曲疲劳强度的影响[J]. 复合材料学报, 2011, 28(2):100-104. ZHOU H H, LI K Z, LI H J, et al. Effect of cycles on flexural fatigue strength for 2D C/C composites[J]. Acta Materiae Compositae Sinica, 2011, 28(2):100-104 (in Chinese). |
[19] | RAMAMURTY U, MCNULTY J C, STEEN M. Fatigue in ceramic matrix composites[M]//KELLY A, ZWEBEN C. Comprehensive Composite Materials. Oxford:Pergamon Press, 2000:163-219. |