全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2018 

四种壳类纤维/聚氯乙烯木塑复合材料的蠕变及磨损性能
Creep and wear properties of four different types of husk fibers/polyvinyl chloride composites

DOI: 10.13801/j.cnki.fhclxb.20170815.001

Keywords: 壳类纤维,聚氯乙烯,复合材料,蠕变,磨损
husk fibers
,polyvinyl chloride,composites,creep,wear

Full-Text   Cite this paper   Add to My Lib

Abstract:

选用4种壳类纤维—椰子壳、榛子壳、核桃壳和稻壳为填充材料,聚氯乙烯(PVC)为基体材料,制备壳类纤维/PVC复合材料,对4种壳类纤维进行了FTIR和热分析,对4种壳类纤维/PVC复合材料进行蠕变及磨损性能测试。结果表明:4种壳类材料中,稻壳纤维中纤维素含量最高,为43.6%,稻壳纤维/PVC复合材料具有较好的结合界面和力学性能,其压缩、拉伸和弯曲强度最高,分别为43.1 MPa、23.2 MPa和46.1 MPa,比强度最低的核桃壳纤维/PVC复合材料分别高出13.7%、33.3%和21.0%,在相同应力作用下,稻壳纤维/PVC复合材料蠕变应变值最小;在相同磨损条件下,稻壳纤维/PVC复合材料的比磨损率最小,其摩擦系数亦为最小。 Four kinds of husk fibers, coconut shell, hazelnut shell, walnut shell and rice husk were used as filler material and polyvinyl chloride as the base material to prepare the husk fiber/polyvinyl chloride composites. Four kinds of husk fibers were analyzed by comprehensive thermal analyzer and FTIR. The creep and wear properties of four kinds of husk fiber/polyvinyl chloride composites were tested. The results show that the cellulose content in rice husk is 43.6%, which is the highest in the four kinds of husk fibers. The rice husk fiber/polyvinyl chloride composites have good interface and mechanical properties, and their compressive, tensile and flexural strength are the highest, which is 43.1 MPa, 23.2 MPa and 46.1 MPa, and increase by 13.7%, 33.3% and 21.0%, respectively, compared with walnut shell fiber/polyvinyl chloride composites of lowest strength. Under the same stress, the creep strain of rice husk fiber/polyvinyl chloride composites is the smallest. Under the same wear conditions, the specific wear rate of rice husk fiber/polyvinyl chloride composites is the smallest, while their friction coefficient is also the smallest. 国家科技支撑计划(2011BAD20B03-2)

References

[1]  OLAKANMI E O, OGUNESAN E A, VUNAIN E, et al. Mechanism of fiber/matrix bond and properties of wood polymer composites produced from alkaline treated Daniella oliveri wood flour[J]. Polymer Composites, 2015, 37(9):2657-2672.
[2]  中华人民共和国国家质量监督检验检疫总局. 塑料硬度测定:GB/T 3398.1-2008[S]. 北京:中国标准出版社, 2008. General Administration of Quality Supervision, Inspection and Quarantine of the People' s Republic of China. Plastic-Determination of hardness properties:GB/T 3398.1-2008[S]. Beijing:Standards Press of China, 2008(in Chinese).
[3]  中华人民共和国国家质量监督检验检疫总局. 塑料压缩性能的测定:GB/T1041-1992[S]. 北京:中国标准出版社, 1992. General Administration of Quality Supervision, Inspection and Quarantine of the People' s Republic of China. Plastic-Determination of compressive properties:GB/T 1041-1992[S]. Beijing:Standards Press of China, 1992(in Chinese).
[4]  中华人民共和国国家质量监督检验检疫总局. 塑料拉伸性能的测定:GB/T1040.1-2006[S]. 北京:中国标准出版社, 2006. General Administration of Quality Supervision, Inspection and Quarantine of the People' s Republic of China. Plastic-Determination of tensile properties:GB/T 1040.1-2006[S]. Beijing:Standards Press of China, 2006(in Chinese).
[5]  XIAN G, ZHANG Z. Sling wear of polyetherimide matrix composites:Influence of short carbon fibre reinforcement[J]. Wear, 2005, 258(5-6):776-782.
[6]  付菁菁, 何春霞, 常萧楠, 等. 麦秸秆/聚丙烯发泡复合材料的热稳定性与微观结构[J]. 复合材料学报, 2016, 33(3):469-476. FU J J, HE C X, CHANG X N, et al. Thermo-stability and microstructure of wheat straw/polypropylene foamed compo-sites[J]. Acta Materiae Compositae Sinica, 2016, 33(3):469-476(in Chinese).
[7]  徐勇, 沈其荣, 钟增涛, 等. 水稻秸秆接力处理过程中的红外光谱研究[J]. 光谱学与光谱分析, 2004, 24(9):1050-1054. XU Y, SHEN Q R, ZHONG Z T, et al. Studies on the changes in rice straw composition in relay treatment of chemical-microbial process by FTIR spectroscopy[J]. Spectroscopy and Spectral Analysis, 2004, 24(9):1050-1054(in Chinese).
[8]  JEAMTRAKULL S, KOSITCHAIYONG A, MARKPIN T, et al. Effects of wood constituents and content, and glass fiber reinforcement on wear behavior of wood/PVC composites[J]. Composites Part B:Engineering, 2012, 43(7):2721-2729.
[9]  吴劲锋, 黄建龙, 张维果, 等. 苜蓿草粉对金属材料磨损性能的影响[J]. 摩擦学学报, 2007, 27(1):88-90. WU J F, HUANG J L, ZHANG W G, et al. Friction and wear behavior of the metals by alfalfa powder[J]. Tribology, 2007, 27(1):88-90(in Chinese).
[10]  张克平, 姜良朋, 黄晓鹏. 小麦磨粉机磨辊材料抗磨损热处理工艺优化[J]. 农业工程学报, 2016, 32(21):271-276. ZHANG K P, JIANG L P, HUANG X P. Heat treatment process optimization of roller material of wheat mill against abrasive wear[J]. Transactions of the CSAE, 2016, 32(21):271-276(in Chinese).
[11]  DEFOIRDT N, GARDIN S, BULCKE J V D, et al. Moisture dynamics of WPC and the impact on fungal testing[J]. International Biodeterioration & Biodegradation, 2010, 64(1):65-72.
[12]  FELIX J S, DOMENO C, NERIN C. Characterization of wood plastic composites made from landfill-derived plastic and sawdust:Volatile compounds and olfactometric analysis[J]. Waste Management, 2013, 33(3):645-655.
[13]  ZHOU Y, FAN M, CHEN L. Interface and bonding mechanisms of plant fibre composites:An overview[J]. Composites Part B:Engineering, 2016, 101:31-45.
[14]  LIU R, PENG Y, CAO J, et al. Comparison on properties of lignocellulosic flour/polymer composites by using wood, cellulose, and lignin flours as fillers[J]. Composites Science & Techology, 2014, 103:1-7.
[15]  KIM S S, YU H N, HWANG I U, et al. Characteristics of wood-polymer composite for journal bearing materials[J]. Composite Structures, 2008, 86(1-3):279-284.
[16]  AURREKOETXEA J, SARRIONANDIA M, GOMEZ X. Effects of microstructure on wear behaviour of wood reinforced polypropylene composite[J]. Wear, 2008, 265(5-6):606-611.
[17]  JEAMTRAKULL S, KOSITCHAIYONG A, MARKPIN T, et al. Effects of wood constituents and content, and glass fiber reinforcement on wear behavior of wood/PVC composites[J]. Composites Part B:Engineering, 2012, 43(7):2721-2729.
[18]  中华人民共和国国家质量监督检验检疫总局. 塑料弯曲性能的测定:GB/T 9341-2008[S]. 北京:中国标准出版社, 2008. General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China. Plastic-Determination of bending properties:GB/T 9341-2008[S]. Beijing:Standards Press of China, 2008(in Chinese).
[19]  薛文勇. 木塑复合材料在城市景观中的应用研究[J]. 塑料科技, 2016, 44(12):47-50. XUE W Y. Research on application of wood-plastic compo-sites in the city landscape[J]. Plastics Science and Technology, 2016, 44(12):47-50(in Chinese).
[20]  徐海龙, 曹岩, 王伟宏, 等. 杨木纤维尺寸对热压成型杨木纤维/高密度聚乙烯复合材料力学和蠕变性能的影响[J]. 复合材料学报, 2016, 33(6):1168-1173. XU H L, CAO Y, WANG W H, et al. Effects of poplar wood fiber size on mechanical and creep properties of poplar wood fiber/high-density polyethylene composites prepared by hot-compression molding[J]. Acta Materiae Composites Sinica, 2016, 33(6):1168-1173(in Chinese).
[21]  GEORGIOPOULOS P, KONTOU E, CHRISTOPOULOS A. Short-term creep behavior of a biodegradable polymer reinforced with wood-fibers[J]. Composites Part B:Engineering, 2015, 80:134-144.
[22]  OLAKANMI E O, STRYDOM M J. Critical materials and processing challenges affecting the interface and functional performance of wood polymer composites (WPCs)[J]. Materials Chemistry and Physics, 2016, 171:290-302.
[23]  OHTANI T, KAMASAKI K, TANAKA C. On abrasive wear property during three-body abrasion of wood[J]. Wear, 2003, 255(1):60-66.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133