全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2018 

类金刚石纳米薄膜的表面摩擦规律及磨损模型
Surface friction law and wear model of nanoscale diamond-like carbon film

DOI: 10.13801/j.cnki.fhclxb.20170807.002

Keywords: 类金刚石,磨损率,分子动力学,磨损模型,摩擦力
diamond-like carbon
,wear rate,molecular dynamics,wear model,friction force

Full-Text   Cite this paper   Add to My Lib

Abstract:

为了研究类金刚石(Diamond-like carbon,DLC)薄膜的表面摩擦机制及磨损规律,首先通过对晶体碳高温熔化和快速淬火的方式,使用分子动力学模拟制备出DLC薄膜,然后利用半球形压头对薄膜表面进行摩擦刻划。制备得到的DLC薄膜密度为2.72 g·cm-3,碳原子sp2、sp3杂化比例分别为37.1%和60.4%。摩擦结果表明,较低压力载荷下磨损率随着载荷力增加而线性增加,与宏观Archard模型一致;摩擦速度的不同会导致材料被加工表面应力分布及切削深度不同,造成磨损率随着摩擦速度的增加而下降,与实验结果相符;当薄膜含有Si原子夹杂且原子含量从0%增加至25%时,磨损率则先上升后下降。最后建立在压头固定载荷为50 nN下描述摩擦速度、材料夹杂含量与磨损率三者关系的磨损模型,建立的磨损模型与仿真模拟相对误差在10%以内;利用模型得到在压头的载荷和摩擦速度不变时,薄膜磨损率最小值对应的Si夹杂含量为7.2%,这一模型为工程在线预测夹杂含量提供了较简单方便的手段。 In order to investigate the friction mechanism and wear law of diamond-like carbon (DLC) film, the DLC film was firstly prepared in the method of melting crystal carbon at high temperature and quenching it at rapid speeds based on molecular dynamics simulations. A hemispherical indenter was then used to perform friction behavior on the DLC surface. The prepared film has the density of 2.72 g·cm-3, with sp2 and sp3 hybridization fraction of 37.1% and 60.4% respectively. The friction results show that the wear rate increases linearly with the load under 120 nN and this is in agreement with Archard's wear law. Whereas, the wear rate decreases with the friction velocity because of the effects of velocity on stress distribution and cutting depth. If Si atoms are embedded into the film as inclusion and the inclusion content increases from 0% to 25%, the wear rate will firstly decline and then rise. Finally a wear model among inclusion content, friction velocity and wear rate is established according to the wear datum under a certain load of 50 nN, with the relative error less than 10% to simulation results. The wear model indicates that the minimum wear rate occurs when the film has the Si content of 7.2% with a constant load and friction velocity. The wear model provides an efficient and convenient method for predicting inclusion content on line. 国家自然科学基金(51675122)

References

[1]  ROBERTSON J. Diamond-like amorphous carbon[J]. Materials Science and Engineering R, 2002, 37(4):129-181.
[2]  BEWILOGUA K, HOFMANN D. History of diamond-like carbon films:From first experiments to world wide applications[J]. Surface and Coatings Technology, 2014, 242(2):214-225.
[3]  FU T, ZHOU Z F, ZHOU Y M, et al. Mechanical properties of DLC coating sputter deposited on surface nanocrystallized 304 stainless steel[J]. Surface & Coating Technology, 2012, 207(34):555-564.
[4]  艾立强, 张相雄, 陈民, 等. 类金刚石薄膜在硅基底上的沉积及其热导率[J]. 物理学报, 2016, 65(9):096501-096507. AI Liqiang, ZHANG Xiangxiong, CHEN Min, et al. Deposition and thermal conductivity of diamond-like carbon film on a silicon substrate[J]. Acta Physica Sinica, 2016, 65(9):096501-096507(in Chinese)
[5]  KIM H J, NGUYEN G H, KY D L C, et al. Static and kinetic friction characteristics of nanowire on different substrates[J]. Applied Surface Science, 2016, 379(30):452-461.
[6]  RANGANATHAN R, ROKKAM S, DESAI T, et al. Generation of amorphous carbon models using liquid quench method:A reactive molecular dynamics study[J]. Carbon, 2017, 113:87-99.
[7]  MARKS N A. Evidence for subpicosecond thermal spikes in the formation of tetrahedral amorphous carbon[J]. Physics Review B, 1997, 56(56):2441-2446.
[8]  CROMBEZ R, MCMINIS J, VEERASAMY V S, et al. Experimental study of mechanical properties and scratch resistance of ultra-thin diamond-like-carbon (DLC) coating deposited on glass[J]. Tribology International, 2011, 44(1):55-62.
[9]  BERMAN D, DESHMUKH S A, SANKARANARAYANAN S K R S. Macroscale superlubricity enabled by graphene nanoscroll formation[J]. Science, 2015, 348(6239):1118-1122.
[10]  陈青云, 施凯敏, 苏敏华, 等. 类金刚石膜研究进展[J]. 材料工程, 2017, 45(3):119-128. CHEN Qingyun, SHI Kaimin, SU Minhua, et al. Process of diamond-like films[J]. Journal of Material Engineering, 2017, 45(3):119-128(in Chinese).
[11]  FERRARI A C. Diamond-like carbon for magnetic storage disks[J]. Surface Coating Technology, 2004, 180(3):190-206.
[12]  TAGAWA N, TANI H, ASADA H, et al. Decomposition of perfluoropolyether lubricant on air-bearing surfaces during heat-assisted magnetic recording[J]. IEEE Transactions on Magnetics, 2017, 53(3):3301505.
[13]  HAUERTC R. A review of modified DLC coatings for biological applications[J]. Diamond & Related Materials, 2003, 12(3):583-589.
[14]  SAINIO S, NORDLUND D, CARO M A, et al. Correlation between sp3-to-sp2 ratio and surface oxygen functionalities in tetrahedral amorphous carbon (ta-c) thin film electrodes and implications of their electrochemical properties[J]. Journal of Physical Chemistry C, 2016, 120(15):8298-8304.
[15]  SHA Z D, SORKIN V, BRANICIO P S, et al. Large-scale molecular dynamics simulation of wear in diamond-like carbon at the nanoscale[J]. Applied Physics Letters, 2013, 103(7):3118-3122.
[16]  AMANOV A, WATABE T, TSUBOI R, et al. Improvement in the tribological characteristics of Si-DLC coating by laser surface texturing under oil-lubricated point contacts at various temperatures[J]. Surface and Coatings Technology, 2013, 232(10):549-560.
[17]  LOTFI R, JONAYAT A S M, VAN DUIN A C T, et al. A reactive force field study on the interaction of lubricant with diamond-like carbon structures[J]. Journal of Physical Chemistry, 2016, 120(48):27443-27451.
[18]  MARKS N A, COOPER N, MCKENZIE D, et al. Comparison of density-functional, tight-binding, and empirical methods for the simulation of amorphous carbon[J]. Physical Review B, 2002, 65(7):075411.
[19]  CHARITIDIS C A. Nanomechanical and nanotribological properties of carbon-based thin films:A review[J]. International Journal of Refractory Metals and Hard Materials, 2010, 28(1):51-70.
[20]  TERSOFF J. Emprical interaction potential for carbon with application to amorphous carbon[J]. Physical Review Letter, 1988, 61(25):2879-2882.
[21]  LAMPIN E, PRIESTER C, KRZEMINSKI C, et al. Graphene buffer layer on Si-terminated SiC studied with an empirical interatomic potential[J]. Journal of Applied Phy-sics, 2010, 107:103514-103521.
[22]  PLIMPTON S. Fast parallel algorithms for short range molecular dynamics[J]. Journal of Computational Physics, 1995, 117(1):1-19.
[23]  BAI L C, SRIKANTH N, KORZNIKOVA E A, et al. Wear and friction between smooth or rough diamond-like carbon filmsand diamond tips[J]. Wear, 2017, 372-373:12-20.
[24]  MO Y, TURNER K T, SZLUFARSK I. Friction laws at nanoscale[J]. Nature, 2009, 457:1116-1119.
[25]  HAUERT R. An overview on the tribological behavior of diamond-like carbon in technical and medical applications[J]. Tribology International, 2004, 37(1):991-1003.
[26]  TAO Z, BHUSHAN B. Velocity dependence and rest time effect on nanoscale friction of untrathin films at high sliding velocities[J]. Journal of Vacuum Science & Technology A, 2007, 25(4):1267-1274.
[27]  KIM H J, KIM D E. Nano-scale friction:A review[J]. International Journal of Precision Engineering and Manufacturing, 2009, 10(2):141-151.
[28]  LI L Q, SONG W P, LIU J, et al. Nanomechanical and nanotribological behavior of ultra-thinsilicon-doped diamond-like carbon films[J]. Tribology International, 2016, 94:616-623.
[29]  郑伟刚, 尹存宏, 杨宁, 等. 基于Archard的正挤压模具磨损模拟分析与研究[J]. 锻压技术, 2013, 38(5):148-151. ZHENG Weigang, YIN Cunhong, YANG Ning, et al. Die wear simulation of forward extrusion process based on Archard theor[J]. Forging and Stamping Technology, 2013, 38(5):148-151(in Chinese).
[30]  郭俊贤, 王波, 杨振宇. 石墨烯/Cu复合材料力学性能的分子动力学模拟[J]. 复合材料学报, 2014, 31(1):152-157. GUO Junxian, WANG Bo, YANG Zhenyu. Molecular dynamics simulations on the mechanical properties of graphene/Cu composites[J]. Acta Materiae Composite Sinica, 2014, 31(1):152-157(in Chinese).
[31]  ARCHARD J F. Contact and rubbing of flat surfaces[J]. Journal of Applied Physics, 1953, 24:981-988.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133