全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2018 

玻璃纤维/树脂复合材料缠绕空心玻璃微珠/树脂实芯球形结构单元耐撞能量耗散机制
Energy dissipation mechanism of glass fiber/resin composite wound hollow glass microspheres/resin solid ball element under impact loading

DOI: 10.13801/j.cnki.fhclxb.20170829.005

Keywords: 纤维缠绕,复合材料,球形结构,能量耗散,储备浮力
filament wound
,composite,spherical structure,energy dissipation,reserve buoyancy

Full-Text   Cite this paper   Add to My Lib

Abstract:

提出并设计了一种新型的玻璃纤维/树脂复合材料缠绕空心玻璃微珠/树脂实芯球形结构单元。为探讨其在低速大质量冲击载荷作用下的约束损伤演变特征和耐撞能量耗散机制,通过ABAQUS建立该结构单元的数值分析模型并开展了低速大质量冲击试验研究。数值模拟与试验结果对比分析表明,该结构单元耐撞性设计的关键在于表层与内部球形浮力芯材的泊松比匹配性设计。内部球形浮力芯材在环向泊松较低表层约束应力的控制下发生平稳的塑性压缩损伤和剪切断裂破坏,表层在内部球形芯材横向膨胀效应的作用下发生渐进式环向拉伸断裂破坏,呈现花瓣形损伤破坏特征。结果表明,该新型结构单元不仅具有优异的耐撞能量耗散特性,同时能为水下结构平台提供一定的储备浮力。 The new energy absorption structure of glass fiber/resin composite wound hollow glass microspheres/resin solid ball element had been put forward. In order to investigate the damage evolvement law and energy dissipation mechanism of the element, the numerical analysis model was built by ABAQUS and the experiments were conducted under low-velocity and large-mass impact loading. Comparative analysis of numerical simulation and experimental results show that the key to the crashworthiness design of the structure was the compatibility design of the Poisson' s ratio between the surface and solid buoyant core.The smooth plastic compression damage and shear failure of the solid buoyant core come to occur due to the constraint stress of the composite surface with lower Poisson's ratio. The progressive tensile breaking of the composite surface is caused by transverse expansion deformation of the solid buoyant core and the petal shaped damage appears. The results show that this new structure has good energy dissipation property and provide certain reserve buoyancy. 国家自然科学基金(51479205)

References

[1]  ISMAIL M S, PURBOLAKSONO J, ANDRIYANA A, et al. The use of initial imperfection approach in design process and buckling failure evaluation of axially compressed compo-site cylindrical shells[J]. Engineering Failure Analysis, 2015, 51:20-28.
[2]  徐芝纶. 弹性力学[M]. 北京:高等教育出版社, 2006:107-110. XU Zhilun. Elastic mechanics[M]. Beijing:Higher Education Press, 2006:107-110(in Chinese).
[3]  ASTM. Standard test method for high speed puncture properties of plastics using load and displacement sensors:ASTM D3763-06[S]. Philadelphia:ASTM, 2006.
[4]  ABAQUS Inc, Ltd. Abaqustheory manual. Version V 6.12[M]. RhodeIsland:ABAQUS Inc, Ltd, 2012.
[5]  AHMAD Z, THAMBIRATNAM D P. Application of foam filledconical tubes in enhancing the crashworthiness performance of vehicle protective structures[J]. International Journal of Crashworthiness, 2009, 14(4):349-363.
[6]  BI J, FANG H B, WANG Q, et al. Modeling and optimization of foam-filled thin-walled columns for crashworthiness designs[J]. Finite Elements in Analysis & Design, 2010, 46(9):698-709.
[7]  LIM J Y, BART-SMIT H H. Theoretical approach on the dynamic global buckling response of metallic corrugated core sandwich columns[J]. International Journal of Non-Linear Mechanics, 2014, 65:14-31.
[8]  赵效东. 海洋工程结构物碰撞失效准则研究[D]. 哈尔滨:哈尔滨工程大学, 2010. ZHAO Xiaodong. Research of failure criterion of offshore structural collision[D]. Harbin:Harbin Engineering University, 2010(in Chinese).
[9]  SUN F F, FAN H L, ZHOU C W, et al. Equivalent analysis and failure prediction of quasi-isotropic composite sandwich cylinder with lattice core under uniaxial compression[J]. Composite Structures, 2013, 101:180-190.
[10]  YIN H F, WEN G L, HOU S J, et al. Multiobjective crashworthiness optimization of functionally lateral graded foam-filled tubes[J]. Materials & Design, 2013, 44(7):414-428.
[11]  YAN L L, YU B, HAN B, et al. Compressive strength and energy absorption of sandwich panels with aluminum foam filled corrugated cores[J]. Composites Science and Technology, 2013, 86(7):142-148.
[12]  范华林, 杨卫. 轻质高强点阵材料及其力学性能研究进展[J]. 力学进展, 2007, 37(1):99-112. FAN Hualing, YANG Wei. Development of lattice materials with high specific stiffness and strength[J]. Advances in Mechanics, 2007, 37(1):99-112(in Chinese)
[13]  YAN L L, HAN B, YU B, et al. Three-point bending of sandwich beams with aluminum foam-filled corrugated cores[J]. Materials & Design, 2014, 60(8):510-519.
[14]  HE W, GUAN Z D, LI X, et al. Prediction of permanent indentation due to impact on laminated composites based on an elasto-plastic model incorporating fiber failure[J]. Composite Structures, 2013, 96(4):232-242.
[15]  陈立明, 戴政, 范华林, 等. 轻质点阵夹层圆柱壳的设计与分析[J]. 清华大学学报(自然科学版), 2012, 52(4):489-493. CHEN Liming, DAI Zheng, FAN Hualin, et al. Design and analysis of light weight lattice sandwich cylinders[J]. Journal of Tsinghua University(Science and Technology), 2012, 52(4):489-493(in Chinese).
[16]  庄茁, 由小川, 廖剑晖, 等. 基于ABAQUS的有限元分析和应用[M]. 北京:清华大学出版社, 2009:219-223. ZHUANG Zhuo, YOU Xiaochuan, LIAO Jianhui, et al. Finite element analysis and application based on ABAQUS[M]. Beijing:Tsinghua University Press, 2009:219-223(in Chinese).
[17]  闫光, 韩小进, 阎楚良, 等. 复合材料圆柱壳轴压屈曲性能分析[J]. 复合材料学报, 2014, 31(3):781-787. YAN Guang, HAN Xiaojing, YAN Chuliang, et al. Buckling analysis of composite cylindrical shell underaxial compression load[J]. Acta Materiae Compositae Sinica, 2014, 31(3):781-787(in Chinese).
[18]  LI X, WANG Z H, ZHU F, et al. Response of aluminium corrugated sandwich panel sunderair blast loadings:Experiment and numerical simulation[J]. International Journal of Impact Engineering, 2014, 65(65):79-88.
[19]  JIN F, CHEN H L, ZHAO L, et al. Failure mechanisms of sandwich composites with orthotropic integrated woven corrugated cores:Experiments[J]. Composite Structures, 2013, 98(3):53-58.
[20]  XIONG J, GHOSH R, MA L, et al. Bending behavior of lightweight sandwich-walled shells with pyramidal truss cores[J]. Composite Structures, 2014, 116(1):793-804.
[21]  ZHANG Y, SUN G Y, LI G Y, et al. Optimization of foam-filled bitubal structures for crashworthiness criteria[J]. Materials & Design, 2012, 38:99-109.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133