全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2018 

基于SPS法B4C/6061Al中子吸收复合材料组织及性能
Microstructure and mechanical properties of B4C/6061Al neutron absorber composites prepared by SPS

DOI: 10.13801/j.cnki.fhclxb.20170428.001

Keywords: 放电等离子烧结,B4C,Al,复合材料,等离子体,界面,断裂机制
spark plasma sintering (SPS)
,B4C,Al,composites,plasma,interface,fracture mechanism

Full-Text   Cite this paper   Add to My Lib

Abstract:

B4C中B的同位素10B具有较大的热中子吸收截面,是良好的中子吸收体。采用放电等离子烧结法(SPS)制备了B4C体积分数为10%~40%的B4C/6061Al中子吸收复合材料,对B4C/6061Al中子吸收复合材料的微观组织形貌及物相组成进行了观察分析,并测试了其拉伸性能。结果表明:B4C颗粒均匀地分布在6061Al基体中,颗粒尖端放电产生的等离子体能够促进B4C颗粒/6061Al基体界面结合,材料内部的物相主要有Al、B4C、AlB2和Al3BC。随着B4C体积分数的增加,B4C/6061Al中子吸收复合材料的致密度降低,抗拉强度先增加后降低,断裂机制主要为6061Al基体及B4C颗粒/6061Al基体界面的撕裂。 The 10B isotope of B in B4C which has high thermal neutron absorption cross-section is a great neutron absorber. B4C/6061Al composites with the B4C volume fractions of 10%-40% were fabricated by spark plasma sintering(SPS), the microstructure and phase composition of B4C/6061Al neutron absorber composites (B4C/6061Al) were analyzed and the tensile property of B4C/6061Al was measured. The results show that B4C particles distribute relatively homogeneously in 6061Al matrix, plasma generated by microscopic electrical discharge between the particles can improve the interfacial bonding of B4C particle/6061Al matrix, the phases of composites are mainly Al, B4C, AlB2 and Al3BC. With the increase of B4C volume fractions, the relative density of B4C/6061Al decreases and the tensile strength first increases and then decreases, the fracture mechanism is mainly the tear of 6061Al matrix and the B4C particle/6061Al matrix interface. 国家自然科学基金(51775366);山西省科技公关项目(20130321024)

References

[1]  王传薪, 刘东明, 王建刚, 等. B4C增强铝基复合材料力学性能有限元模拟[J]. 复合材料学报, 2016, 33(10):2253-2260. WANG Chuanxin, LIU Dongming, WANG Jian'gang, et al. Simulation of mechanical behaviors of B4C reinforced Al matrix composites by finite element[J]. Acta Materiae Compositae Sinca, 2016, 33(10):2253-2260(in Chinese).
[2]  苏大为, 赵玉涛, 陈刚, 等. 数值模拟在金属基复合材料铸造性能研究上的应用[J]. 复合材料学报, 2009, 26(4):89-94. SU Dawei, ZHAO Yutao, CHEN Gang, et al. Application of numerical simulation in the casting properities of metal matrix composites[J]. Acta Materiae Compositae Sinica, 2009, 26(4):89-94(in Chinese).
[3]  KORKUT M H. Effect of particulate reinforcement on wear behaviour of aluminium matrix composites[J]. Materials Science and Technology, 2004, 20(1):73-81.
[4]  程光旭, 李峰, 李志军. 颗粒增强铝基复合材料细观损伤演化特征及最弱环损伤模型[J]. 复合材料学报, 2002, 19(6):31-36. CHENG Guangxu, LI Feng, LI Zhijun. Characteristics of micromechanical damage evolution and weakest chain model for particulate reinforced aluminum matrix composites[J]. Acta Materiae Compositae Sinica, 2002, 19(6):31-36(in Chinese).
[5]  LIU C Y, WANG Q, JIA Y Z, et al. Evaluation of mechanical properties of 1060-Al reinforced with WC particles via warm accumulative roll bonding process[J]. Materials & Design, 2012, 43:367-372.
[6]  ZHANG X X, NI D R, XIAO B L, et al. Determination of macroscopic and microscopic residual stresses in friction stir welded metal matrix composites via neutron diffraction[J]. Acta Materialia, 2015, 87:161-173.
[7]  EL-KADY O, FATHY A. Effect of SiC particle size on the physical and mechanical properties of extruded Al matrix nanocomposites[J]. Materials & Design, 2014, 54(2):348-353.
[8]  RAHIMIAN M, EHSANI N, PARVIN N, et al. The effect of particle size, sintering temperature and sintering time on the properties of Al-Al2O3 composites, made by powder metallurgy[J]. Journal of Materials Processing Technology, 2009, 209(14):5387-5393.
[9]  BAHRAMI A, PECHCANUL M I, GUTIéRREZ C A, et al. Wetting and reaction characteristics of crystalline and amorphous SiO2 derived rice-husk ash and SiO2/SiC substrates with Al-Si-Mg alloys[J]. Applied Surface Science, 2015, 357:1104-1113.
[10]  KRASNOWSKI M, GIERLOTKA S, KULIK T. TiC-Al composites with nanocrystalline matrix produced by consolidation of milled powders[J]. Advanced Powder Technology, 2014, 25(4):1269-1272.
[11]  ELDESOUKY A, JOHNSSON M, SVENGREN H, et al. Effect of grain size reduction of AA2124 aluminum alloy powder compacted by spark plasma sintering[J]. Journal of Alloys & Compounds, 2014, 609(1):215-221.
[12]  ZHANG P, LI Y, WANG W, et al. The design, fabrication and properties of B4C/Al neutron absorbers[J]. Journal of Nuclear Materials, 2013, 437(s1-3):350-358.
[13]  CHEN H S, WANG W X, LI Y L, et al. The design, microstructure and mechanical properties of B4C/6061Al neutron absorber composites fabricated by SPS[J]. Materials & Design, 2016, 94:360-367.
[14]  CHEN H S, WANG W X, LI Y L, et al. The design, microstructure and tensile properties of B4C particulate reinforced 6061Al neutron absorber composites[J]. Journal of Alloys & Compounds, 2015, 632:23-29.
[15]  WANG Z, SONG M, SUN C, et al. Effects of particle size and distribution on the mechanical properties of SiC reinforced Al-Cu alloy composites[J]. Materials Science & Engineering A, 2011, 528(3):1131-1137.
[16]  O?ORO J, SALVADOR M D, CAMBRONCRO L E G. High-temperature mechanical properties of aluminium alloys reinforced with boron carbide particles[J]. Rore Metals, 2009, 499(1-2):421-426.
[17]  VAROL T, CANAKCI A. Effect of particle size and ratio of B4C reinforcement on properties and morphology of nanocrystalline Al2024-B4C composite powders[J]. Powder Technology, 2013, 246(9):462-472.
[18]  VINTILA R, CHAREST A, DREW R A L, et al. Synthesis and consolidation via spark plasma sintering of nanostructured Al-5356/B4C composite[J]. Materials Science & Engineering A, 2011, 528(13-14):4395-4407.
[19]  ?ZGE BALCI, A AGAOAGULLARI D, G?K?E H, et al. Influence of TiB2, particle size on the microstructure and properties of Al matrix composites prepared via mechanical alloying and pressureless sintering[J]. Journal of Alloys & Compounds, 2014, 586(4):S78-S84.
[20]  TANG F, WU X, GE S, et al. Dry sliding friction and wear properties of B4C particulate-reinforced Al-5083 matrix composites[J]. Wear, 2008, 264(7-8):555-561.
[21]  王武孝, 袁森. 铸造法制备颗粒增强金属基复合材料的研究进展[J]. 铸造技术, 2001, 1(2):42-45. WANG Wuxiao, YUAN Sen. Research and develpoment of fabrication PRMMC by casting process[J]. Foundry technology, 2001, 1(2):42-45(in Chinese).
[22]  PARK J J, HONG S M, LEE M K, et al. Enhancement in the microstructure and neutron shielding efficiency of sandwich type of 6061Al-B4C composite material via hot isostatic pressing[J]. Nuclear Engineering & Design, 2015, 282:1-7.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133