全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2015 

一种改进的内聚力损伤模型在复合材料层合板低速冲击损伤模拟中的应用
Application of modified cohesive zone damage model in damage simulation of composite laminates subject to low-velocity impact

DOI: 10.13801/j.cnki.fhclxb.20150505.001

Keywords: 低速冲击,内聚力模型,层内裂纹,渐进损伤,有限元模拟
low-velocity impact
,cohesive zone model,intralaminar crack,progressive damage,finite element simulation

Full-Text   Cite this paper   Add to My Lib

Abstract:

针对传统内聚力损伤模型(CZM)无法考虑层内裂纹对界面分层影响的缺点, 提出了一种改进的适用于复合材料层合板低速冲击损伤模拟的CZM.通过对界面单元内聚力本构模型中的损伤起始准则进行修正, 考虑了界面层相邻铺层内基体、 纤维的损伤状态及应力分布对层间强度和分层扩展的影响.基于ABAQUS用户子程序VUMAT, 结合本文模型及层合板失效判据, 建立了模拟复合材料层合板在低速冲击作用下的渐进损伤过程的有限元模型, 计算了不同铺层角度和材料属性的层合板在低速冲击作用下的损伤状态.通过数值模拟与试验结果的对比, 验证了本文方法的精度及合理性. In order to overcome the disadvantage of traditional cohesive zone damage model (CZM) that it cannot present the effect of intralaminar cracks on delamination interface, a modified CZM has been developed for simulation of damage process of composite laminates subject to low-velocity impact. By means of the modification of the damage initiation criteria of cohesion constitutive model used in interface element, the influences of damage status and stress distribution of matrix and fiber in neighboring interface layers on interlaminar strength and delamination propagation have been taken into account. The proposed model, combined with intralaminar failure criterion, was implemented to ABAQUS as a user defined subroutine VUMAT to simulate the progressive damage process of composite laminate under low-velocity impact. In order to valid the accuracy and rationality of this method, the damage status of composite laminates with different ply orientations and material properties are compared with test results. 航空科学基金(20120923002);国家留学基金(11272147)

References

[1]  Choi H Y, Downs R J, Zhang F K. A new approach toward understanding damage mechanisms and mechanics of laminated composites due to low-velocity impact: Part I-experiments [J]. Journal of Composite Materials, 1991, 25(8): 992-1011.
[2]  Moura M F S F, Goncalves J P M. Modelling the interaction between matrix cracking and delamination in carbon–epoxy laminates under low-velocity impact[J]. Composites Science and Technology, 2004, 64(7-8): 1021-1027.
[3]  Richardson M O W, Wisheart M J. Review of low-velocity impact properties of composite materials[J]. Composites Part A: Applied Science and Manufacturing, 1996, 27(96): 1123-1131.
[4]  Raimondo L, Iannucci L, Robinson P. A progressive failure model for mesh-size-independent FE analysis of composite laminates subject to low-velocity impact damage[J]. Composites Science and Technology, 2012, 72(5): 624-632.
[5]  Zhu W Y, Xu X W. Finite element simulation of low velocity impact damage on composite laminates[J]. Acta Materiae Compositae Sinica, 2010, 27(6): 200-207 (in Chinese). 朱炜垚, 许希武. 复合材料层合板低速冲击损伤的有限元模拟[J]. 复合材料学报, 2010, 27(6): 200-207.
[6]  Camanho P P, Dávila C G. Mixed-mode decohesion finite elements for the simulation of delamination in composite materials, NASA/TM-2002-211737[R]. Washington,D.C.: NASA, 2002.
[7]  Turon A, Camanho P P, Costa J, et al. An interface damage model for the simulation of delamination under variable-mode ratio in composite materials, NASA/TM-2004-213277[R]. Washington,D.C.: NASA, 2004.
[8]  Sun Z H, Li X B, Liu T S, et al. Study on the properties of CCF300/9611-II epoxy prepreg and composites[C]//Proceedings of 17th National Conference on Composite Materials. Beijing: CSAA, 2012: 389-400 (in Chinese). 孙占红, 李小兵, 刘天舒, 等. CCF300/BA9916-Ⅱ环氧预浸料及其复合材料性能研究[C]//第17届全国复合材料学术会议论文集. 北京: 中国航空学会, 2012: 389-400.
[9]  Liu D B, Guan Z D, Chen J H, et al. Composiye damage analysis subjected to low-velocity impact[J]. Journal of Beijing University of Aeronautics and Astronautics, 2012, 38(3): 422-426 (in Chinese). 刘德博, 关志东, 陈建华, 等. 复合材料低速冲击损伤分析方法[J]. 北京航空航天大学学报, 2012, 38(3): 422-426.
[10]  Choi H Y, Chang F K. A model for predicting damage in graphite/epoxy laminated composites resulting from low-velocity point impact[J]. Journal of Composite Materials, 1992, 26(14): 2134-2169.
[11]  Richardson M O W, Wisheart M J. Review of low-velocity impact properties of composite materials[J]. Composites Part A: Applied Science and Manufacturing, 1996, 27(96): 1123-1131.
[12]  Lammerant L, Verpoest I. Modeling of the interaction between matrix cracks and delaminations during impact of composite plates[J]. Composites Science and Technology, 1996, 56(10): 1171-1178.
[13]  Hou J P, Petrinic N, Ruiz C. Prediction of impact damage in composite plates[J]. Composites Science and Technology, 2000, 60(2): 273-281.
[14]  Hou J P, Petrinic N, Ruiz C. A delamination criterion for laminated composites under low-velocity impact[J]. Composites Science and Technology, 2001, 61(14): 2069-2074.
[15]  Bouvet C, Castanié B, Bizeul M. Low velocity impact modelling in laminate composite panels with discrete interface elements[J]. International Journal of Solids and Structures, 2009, 46(14-15): 2809-2821.
[16]  Choi H Y, Downs R J, Zhang F K. A new approach toward understanding damage mechanisms and mechanics of laminated composites due to low-velocity impact: Part I-experiments [J]. Journal of Composite Materials, 1991, 25(8): 992-1011.
[17]  Choi H Y, Chang F K. A model for predicting damage in graphite/epoxy laminated composites resulting from low-velocity point impact[J]. Journal of Composite Materials, 1992, 26(14): 2134-2169.
[18]  Lammerant L, Verpoest I. Modeling of the interaction between matrix cracks and delaminations during impact of composite plates[J]. Composites Science and Technology, 1996, 56(10): 1171-1178.
[19]  Moura M F S F, Goncalves J P M. Modelling the interaction between matrix cracking and delamination in carbon-epoxy laminates under low-velocity impact[J]. Composites Science and Technology, 2004, 64(7-8): 1021-1027.
[20]  Hou J P, Petrinic N, Ruiz C. Prediction of impact damage in composite plates[J]. Composites Science and Technology, 2000, 60(2): 273-281.
[21]  Hou J P, Petrinic N, Ruiz C. A delamination criterion for laminated composites under low-velocity impact[J]. Composites Science and Technology, 2001, 61(14): 2069-2074.
[22]  Bouvet C, Castanié B, Bizeul M. Low velocity impact modelling in laminate composite panels with discrete interface elements[J]. International Journal of Solids and Structures, 2009, 46(14-15): 2809-2821.
[23]  Benzeggagh M L, Kenane M. Measurement of mixed-mode delamination fracture toughness of unidirectional glass/epoxy composites with mixed-mode bending apparatus[J]. Composites Science and Technology, 1996, 56(4): 439-449.
[24]  Ye Q. Research on cohesive zone model of laminated composites and its applications[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2012 (in Chinese). 叶强.层合复合材料的粘聚区模型及其应用研究[D]. 南京: 南京航空航天大学, 2012.
[25]  Zou Z, Reid S R, Li S, et al. Application of a delamination model to laminated composite structures[J]. Composite Structures, 2002, 56(4): 375-389.
[26]  American Society for Testing and Materials International. ASTM D7136-05 Standard test method for measuring the damage resistance of fiber-reinforced polymer matrix composite to a drop-weight impact event[S]. West Conshohocken: ASTM International, 2007.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133