全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2018 

CFRP薄壁C型柱轴向压缩破坏机制及吸能特性
Failure mechanism and energy-absorbing characteristics of CFRP thin-walled C-channels subject to axial compression

DOI: 10.13801/j.cnki.fhclxb.20180319.002

Keywords: 碳纤维增强树脂基复合材料(CFRP),薄壁C型柱,铺层角度,失效模式,吸能特性
carbon fiber reinforced polymer (CFRP)
,thin-walled C-channels,ply orientation,failure modes,energy-absorbing characteristics

Full-Text   Cite this paper   Add to My Lib

Abstract:

为研究碳纤维增强树脂基复合材料(CFRP)薄壁C型柱轴向压缩破坏机制及吸能特性,制备了4种铺层方式、3种厚度组合共12种T700/MTM28 CFRP薄壁C型柱试件。考察C型柱低速轴向压缩过程中的失效模式及载荷变化,通过比较初始峰值载荷、平均压缩载荷、比吸能和载荷效率,分析铺层数及铺层角度对C型柱失效模式及吸能特性的影响。结果表明,纯0°铺层C型柱在轴压载荷作用下发生整体失稳,不具备实际意义上的能量吸收作用;0°/90°铺层、±45°铺层、45°/90°/-45°/0°铺层试件均发生了渐进式破坏,呈现出局部屈曲叠缩的失效模式。其中,45°/90°/-45°/0°铺层的C型柱比吸能随铺层数的增加而增加,具有更大的吸能设计与应用潜力。 In order to analyze the failure mechanism and energy-absorbing characteristics of carbon fiber reinforced polymer(CFRP) thin-walled C-channels subject to axial compression, 12 groups of T700/MTM28 CFRP thin-walled C-channels specimens with 3 different layer numbers and 4 different ply orientations were fabricated. The failure modes and load-displacement curves were observed, then the effects of layer number and ply orientation on failure modes and energy-absorbing characteristics were further analyzed by investigating the energy-absorbing characteristics indicator, such as peak load, average load, specific energy absorption, load efficiency. The results show that for specimens with 0° plies, the overall instability occurs so it can not absorb crashing energy. For specimens with 0°/90°, ±45° and 45°/90°/-45°/0°plies, the steady progressive failure and local buckling failure modes are presented. The SEA of C-channel specimens with 45°/90°/-45°/0° plies increases with the layer number increasing and it hence has greater potential for energy-absorbing structure design and application. 中央高校基本科研业务费中国民航大学专项项目(3122016C011);中国民航大学科研启动基金(2017QD10S);中国民航大学天津市民用航空器适航与维修重点实验室开放基金

References

[1]  DAVID M, JOHNSON A F, VOGGENREITER H. Analysis of crushing response of composite crashworthy structures[J]. Applied Composite Materials, 2013, 20(5):773-787.
[2]  FENG Z Y, MOU H L, ZOU T C, et al. Research on effects of composite skin on crashworthiness of composite fuselage section[J]. International Journal of Crashworthiness, 2013, 18(5):459-464.
[3]  MOU H L, ZOU T C, FENG Z Y, et al. Crashworthiness analysis and evaluation of fuselage section with sub-floor composite sinusoidal specimens[J]. Latin American Journal of Solids and Structures, 2016, 13(6):1187-1202.
[4]  MEREDITH J, BILSON E, POWE R, et al. A performance versus cost analysis of prepreg carbon fibre epoxy energy absorption structures[J]. Composite Structures, 2015, 124:206-213.
[5]  SIROMANI D, HENDERSON G, MIKITA D, et al. An experimental study on the effect of failure trigger mechanisms on the energy absorption capability of CFRP tubes under axial compression[J]. Composites Part A:Applied Science & Manufacturing, 2014, 64(21):25-35.
[6]  王璠, 何一帆, 宋毅, 等. 引发方式、铺层对纤维增强复合材料圆柱壳吸能特性影响的冲击试验研究[J]. 振动工程学报, 2013, 26(1):33-40. WANG Fan, HE Yifan, SONG Yi, et al. Impact test study of the effects of trigger and ply on the energy absorption characteristics of fiber reinforced composite cylindrical shells[J]. Journal of Vibration Engineering, 2013, 26(1):33-40(in Chinese).
[7]  PALANIVELU S, PAEPEGEM W V, DEGRIECK J, et al. Parametric study of crushing parameters and failure patterns of pultruded composite tubes using cohesive elements and seam:Part I-Central delamination and triggering modelling[J]. Polymer Testing, 2010, 29(6):729-741.
[8]  程群峰, 许亚洪, 廖建伟, 等. 引发机制对复合材料波形梁吸能性能的影响及其破坏形貌分析[J]. 复合材料学报, 2008, 25(1):161-167. CHENG Qunfeng, XU Yahong, LIAO Jianwei, et al. Effects of triggers on the energy absorption behavior of sine-wave beam and the crush morphology[J]. Acta Materiae Compositae Sinica, 2008, 25(1):161-167(in Chinese).
[9]  FERABOLI P. Development of a modified flat-plate test specimen and fixture for composite materials crush energy absorption[J]. Journal of Composite Materials, 2009, 43(19):1967-1990.
[10]  PALANIVELU S, PAEPEGEM W V, DEGRIECK J, et al. Comparative study of the quasi-static energy absorption of small-scale composite tubes with different geometrical shapes for use in sacrificial cladding structures[J]. Polymer Testing, 2010, 29(3):381-396.
[11]  冯丽娜, 熊健, 郑伟, 等. 复合材料波纹夹层圆柱壳设计及轴压性能[J]. 复合材料学报, 2016, 33(2):418-429. FENG Li'na, XIONG Jian, ZHENG Wei, et al. Fabrication and axial compression properties of composite corrugated sandwich cylindrical shells[J]. Acta Materiae Compositae Sinica, 2016, 33(2):418-429(in Chinese).
[12]  TRAN T N, HOU S, HAN X, et al. Crushing analysis and numerical optimization of angle element structures under axial impact loading[J]. Composite Structures, 2015, 119(119):422-435.
[13]  ROZYLO P. Experimental-numerical test of open section composite columns stability subjected to axial compression[J]. Archives of Materials Science & Engineering, 2017, 84(2):58-64.
[14]  MEREDITH J, BILSON E, POWE R, et al. A performance versus cost analysis of prepreg carbon fibre epoxy energy absorption structures[J]. Composite Structures, 2015, 124:206-213.
[15]  洪武, 徐迎, 金丰年, 等. 薄壁圆锥管轴向压缩吸能特性研究[J]. 振动与冲击, 2015, 34(5):88-94. HONG Wu, XU Ying, JIN Fengnian, et al. Energy absorbing characteristics of tapered circular tubes under axial compression[J]. Journal of Vibration & Shock, 2015, 34(5):88-94(in Chinese).
[16]  FRIEDRICH L, LOOSEN S, LIANG K, et al. Stacking sequence influence on imperfection sensitivity of cylindrical composite shells under axial compression[J]. Composite Structures, 2015, 134:750-761.
[17]  FERABOLI P, WADE B, DELEO F, et al. Crush energy absorption of composite channel section specimens[J]. Composites Part A:Applied Science & Manufacturing, 2009, 40(8):1248-1256.
[18]  JACKSON A, DUTTON S, GUNNION A J, et al. Investigation into laminate design of open carbon-fibre/epoxy sections by quasi-static and dynamic crushing[J]. Composite Structures, 2011, 93(10):2646-2654.
[19]  FERABOLI P, SPETZLER M. Design of energy-absorbing CFRP stanchions for the cargo floor structure of transport category airplane[EB/OL]. http://www.niar.wichita.edu/coe/cecam/design_of_energy_absorbing_cfrp_stanchuions-feraboli.pdf.
[20]  DEEPAK S. Crashworthy design and analysis of aircraft structures[D]. Philadelphia:Drexel University, 2013.
[21]  CAPRIO F D, IGNARRA M, MARULO F, et al. Design of composite stanchions for the cargo subfloor structure of a civil aircraft[J]. Procedia Engineering, 2016, 167:88-96.
[22]  孟祥吉, 燕瑛, 罗海波, 等. 复合材料波纹梁冲击试验与数值模拟[J]. 复合材料学报, 2015, 32(1):196-203. MENG Xiangji, YAN Ying, LUO Haibo, et al. Impact tests and numerical simulation of composite waved-beam[J]. Acta Materiae Compositae Sinica, 2015, 32(1):196-203(in Chinese).
[23]  REDDY A D, REHFIELD L W, BRUTTOMESSO R I, et al. Local buckling and crippling of thin-walled composite structures under axial compression[J]. Journal of Aircraft, 2015, 26(2):97-102.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133