|
- 2018
基于灵敏度分析的复合材料组分参数识别方法
|
Abstract:
为了获取准确的复合材料细观模型,提出了一种复合材料组分参数识别方法。在细观单向碳纤维增强树脂基复合材料(CFRP)有限元模型基础上,构造静态位移场对复合材料组分弹性参数的灵敏度矩阵,以测量位移和有限元计算位移差的二范数为目标函数,针对待识别参数量纲差异较大的问题,利用相对灵敏度提高材料组分弹性参数识别的精度和效率。以纤维均匀分布的复合材料平面模型和纤维随机分布的复合材料实体模型为研究对象,验证所提出组分参数识别方法的有效性和准确性。此外,研究了测点数目及测量误差对识别结果的影响。结果表明:本文提出的复合材料组分参数识别方法在测点数目变化和测量误差影响下仍然稳定。 To obtain the mesoscopic model of composites, an approach on parameter identification of composite components with high accuracy was proposed. Based on the finite element model of micro unidirectional carbon reinforced polymer composite (CFRP), the sensitivity matrix of static displacements with respect to elastic parameters of composite components was formulated and the objective function was defined as the 2-norm of differences between the measured and calculated data on displacements. In order to overcome the problem caused by the magnitude differences between identified variables, the relative sensitivity was chosen to improve the precision and efficiency of parameter identification. The fiber uniform distributed composite plane model and fiber random distributed 3D model were employed respectively to verify the validity and accuracy of the components parameter identification methods. In addition, the influences of number of measuring points and measurement errors on the parameter identification method were revealed. Results show that the identification method of components parameters of composite materials in the presented study is stable considering the influences of number of measuring points and measurement errors. 国家自然科学基金(11602112;11572086)
[1] | RILEY M B, WHITNEY J M. Elastic properties of fiber reinforced composite materials[J]. AIAA Journal, 2012, 4(9):1537-1542. |
[2] | SIDERIDIS E, THEOTOKOGLOU E E, GIANNOPOULOS I. Analytical and computational study of the moduli of fiber-reinforced composites and comparison with experiments[J]. Composite Interfaces, 2015, 22(7):563-578. |
[3] | CHENG L, XU Y, ZHANG L, et al. Effect of heat treatment on the thermal expansion of 1D C/SiC composites from room temperature to 1400℃:Science and engineering of composite materials[J]. Carbon, 2002, 10(2):113-118. |
[4] | MEI H, BAI Q, SUN Y, et al. The effect of heat treatment on the strength and toughness of carbon fiber/silicon carbide composites with different pyrolytic carbon interphase thicknesses[J]. Carbon, 2013, 57(6):288-297. |
[5] | LU Z, CUI L, YUAN Z, et al. Numerical analysis of the elastic-plastic properties of the composites incorporating nanohybrid shish-kebab structures[J]. Computational Materials Science, 2015, 109(109):56-65. |
[6] | LU Z, YUAN Z, LIU Q, et al. Multi-scale simulation of the tensile properties of fiber-reinforced silica aerogel composites[J]. Materials Science & Engineering A, 2015, 625:278-287. |
[7] | 李双蓓, 周小军, 黄立新, 等. 基于有限元法的正交各向异性复合材料结构材料参数识别[J]. 复合材料学报, 2009, 26(4):197-202. LI S B, ZHOU X J, HUANG L X, et al. Material parameter identification for orthotropic composite structure by the finite element method[J]. Acta Materiae Comositae Sinica, 2009, 26(4):197-202(in Chinese). |
[8] | TAM J H, ZHI C O, LAU C L, et al. Identification of material properties of composite plates using Fourier-generated frequency response functions[J]. Mechanics of Advanced Materials & Structures, doi:10.1080/15376494.2017.1365980 |
[9] | CHARKAS H, RASHEED H, NAJJAR Y. Calibrating a J2 plasticity material model using a 2D inverse finite element procedure[J]. International Journal of Solids & Structures, 2008, 45(5):1244-1263. |
[10] | MISHRA A K, CHAKRABORTY S. Inverse detection of constituent level elastic parameters of FRP composite panels with elastic boundaries using finite element model updating[J]. Ocean Engineering, 2016, 111:358-368. |
[11] | COOREMAN S, LECOMPTE D, SOL H, et al. Elasto-plastic material parameter identification by inverse methods:Calculation of the sensitivity matrix[J]. International Journal of Solids & Structures, 2007, 44(13):4329-4341. |
[12] | COMELLAS E, VALDEZ S I, OLLER S, et al. Optimization method for the determination of material parameters in damaged composite structures[J]. Composite Structures, 2015, 122:417-424. |
[13] | NAKAMURA T, GU Y. Identification of elastic-plastic anisotropic parameters using instrumented indentation and inverse analysis[J]. Mechanics of Materials, 2007, 39(4):340-356. |
[14] | TRUESDELL C, TOUPIN R. The classical field theories[M]. Berlin:Springer, 1960. |
[15] | BATHE, KLAUS Jürgen. Finite element procedures[M]. Englewood:Prentice Hall, 2006. |
[16] | JIANG D, ZHANG D, FEI Q, et al. An approach on identification of equivalent properties of honeycomb core using experimental modal data[J]. Finite Elements in Analysis & Design, 2014, 90(6):84-92. |
[17] | 邓乃扬, 诸梅芳. 最优化计算方法[M]. 西安:中国人民解放军空军工程学院, 1983. DENG N Y, ZHU M F. Optimal calculation method[M]. Xi'an:Air Force Engineering University, 1983(in Chinese). |
[18] | HANSEN P C. Regularization tools version 4.0 for Matlab 7.3[J]. Numerical Algorithms, 2007, 46(2):189-194. |
[19] | FURUKAWA T, MICHOPOULOS J G. Regularized identification of material constants using multi-Objective gradient-based method[M]//Fracture of Nano and Engineering Materials and Structures. Netherlands:Springer, 2006:1343-1344. |
[20] | CHAMIS C C, ABDI F, GARG M, et al. Micromechanics-based progressive failure analysis prediction for WWFE-Ⅲ composite coupon test cases[J]. Journal of Composite Materials, 2013, 47(20-21):2695-2712. |
[21] | GRAS R, LECLERC H, HILD F, et al. Identification of a set of macroscopic elastic parameters in a 3D woven compo-site:Uncertainty analysis and regularization[J]. International Journal of Solids & Structures, 2015, 55:2-16. |
[22] | JIANG D, LI Y, FEI Q, et al. Prediction of uncertain elastic parameters of a braided composite[J]. Composite Structures, 2015, 126:123-131. |
[23] | 孔春元, 孙志刚, 高希光, 等. 2.5维C/SiC复合材料经向拉伸性能[J]. 复合材料学报, 2012, 29(2):192-198. KONG C Y, SUN Z G, GAO X G, et al. Tensile property of 2.5D C/SiC composites in warp direction[J]. Acta Materiae Compositae Sinica, 2012, 29(2):192-198(in Chinese). |