|
- 2017
新型填料对高摩复合材料摩擦磨损性能影响及机制
|
Abstract:
[1] | KUO H H, LIN J H C, JU C P. Tribological behavior of fast-carbonized PAN/phenolic-based carbon/carbon composite and method for improving same[J]. Wear, 2005, 258(10): 1555-1561. |
[2] | CAI P, WANG Y, WANG T, et al. Effect of resins on thermal, mechanical and tribological properties of friction materials[J]. Tribology International, 2015, 87: 1-10. |
[3] | 徐祥, 杨明. 有机复合摩擦材料及其研究现状[J]. 材料导报, 2015, 29(21): 81-86. XU X, YANG M. Research situation about the organic brake friction materials[J]. Materoals Review, 2015, 29(21): 81-86 (in Chinese). |
[4] | NEIS P D, FERREIRA N F, SILVA F P D. Comparison between methods for measuring wear in brake friction materials[J]. Wear, 2014, 319(1-2): 191-199. |
[5] | CHAN D S E A. Review of automotive brake friction materials[J]. Proceedings of the Institution of Mechanical Engineers Part D: Journal of Automobile Engineering, 2004, 218(9): 953-966. |
[6] | CHO M H, JU J, KIM S J, et al. Tribological properties of solid lubricants (graphite, Sb2S3, MoS2) for automotive brake friction materials[J]. Wear, 2006, 260(7-8): 855-860. |
[7] | SINGH T, PATNAIK A, GANGIL B, et al. Optimization of tribo-performance of brake friction materials: Effect of nano filler[J]. Wear, 2015, 324-325: 10-16. |
[8] | KOLLURI D K, GHOSH A K, BIJWE J. Performance evaluation of composite friction materials: Influence of nature and particle size of graphite[J]. Journal of Reinforced Plastics and Composites, 2010, 29(18): 2842-2854. |
[9] | SATAPATHY B K, BIJWE J. Wear data analysis of friction materials to investigate the simultaneous influence of operating parameters and compositions[J]. Wear, 2004, 7(256): 797-804. |
[10] | 张宝玉, 姚冠新. 硬质填料ZrSiO4、 Al2O3对制动摩擦材料性能的影响[J]. 玻璃钢/复合材料, 2013, 19(7): 32-36. ZHANG B Y, YAO G X. Effect of antifriction filler ZrSiO4 and Al2O3 on friction and wear behavior of brake friction material[J]. Fiber Reinforced Plastics/composites, 2013, 19(7): 32-36 (in Chinese). |
[11] | CHO K H, JANG H, HONG Y S, et al. The size effect of zircon particles on the friction characteristics of brake lining materials[J]. Wear, 2008, 264(3-4): 291-297. |
[12] | BIJWE J, ARANGANATHAN N, SHARMA S, et al. Nano-abrasives in friction materials-influence on tribological properties[J]. Wear, 2012, 296(1-2): 693-701. |
[13] | WANG Q, ZHANG X, PEI X. Study on the synergistic effect of carbon fiber and graphite and nanoparticle on the friction and wear behavior of polyimide composites[J]. Materials & Design, 2010, 31(8): 3761-3768. |
[14] | 李勃, 周计明, 齐乐华, 等. 丁腈橡胶对腰果壳油改性酚醛树脂基摩擦材料性能的影响[J]. 润滑与密封, 2016, 41(2): 42-46. LI B, ZHOU J M, QI L H, et al. Effect of Nitrile rubber on properties of cashew-modified phenolic resin-based friction materials[J], Lubrication Engineering, 2016, 41(2): 42-46 (in Chinese). |
[15] | SAFFAR A, SHOJAEI A. Effect of rubber component on the performance of brake friction materials[J]. Wear, 2012, 274-275: 286-297. |
[16] | KUMAR M, BIJWE J. Optimized selection of metallic fillers for best combination of performance properties of friction materials: A comprehensive study[J], 2013, 303(1-2): 569-583. |
[17] | ?ZTüRK B, ?ZTüRK S. Effects of resin type and fiber length on the mechanical and tribological properties of brake friction materials[J]. Tribology Letters, 2011, 42(3): 339-350. |
[18] | 肖叶龙, 姚萍屏, 贡太敏, 等. 石墨与MoS_2比对空间对接用摩擦材料性能的影响[J]. 中国有色金属学报, 2012, 22(9): 2539-2545. XIAO Y L, YAO P P, GONG T M, et al. Effects of proportion of graphite and MoS_2 on performances of space docking friction material[J]. The Chinese Journal of Nonferrous Metals, 2012, 22(9): 2539-2545 (in Chinese). |
[19] | 费杰, 李贺军, 齐乐华, 等. 石墨含量对纸基摩擦材料摩擦磨损性能的影响[J]. 摩擦学学报, 2007, 27(5): 451-455. FEI J, LI H J, QI L H, et al. Effect of graphite content on the friction and wear performance of paper-based friction materials[J]. Tribology, 2007, 27(5): 451-455 (in Chinese). |
[20] | 李淑君, 陶毓博, 李坚, 等. 用TG-DSC-FTIR联用技术研究酚醛树脂的热解行为[J], 东北林业大学学报, 2007, 35(6): 56-58. LI S J, TAO Y B, LI J, et al. Pyrolysis of PF resin with TG-DSC-FTIR[J]. Journal of Northeast Forestry University, 2007, 35(6): 56-58 (in Chinese). |
[21] | ETEMADI H, SHOJAEI A, JAHANMARD P. Effect of alumina nanoparticle on the tribological performance of automotive brake friction materials[J]. Journal of Reinforced Plastics, 2014, 33(2): 166-178. |
[22] | ERIKSSON M, JACOBSON S. Tribological surfaces of organic brake pads[J]. Tribology International, 2000, 33(12): 817-827. |
[23] | 郝田青, 张德坤, 陈凯, 等. GM-3摩擦衬垫动态滑移过程中的摩擦机制研究[J]. 摩擦学学报, 2016, 36(2): 177-184. HE T Q, ZHANG D K, CHEN K, et al. Friction mechanism in dynamic slide process of GM-3 friction liner[J]. Tribology, 2016, 36(2): 177-184 (in Chinese). |
[24] | 王秋凤, 王鸿灵, 王云霞, 等. 表面粗糙度对UHMWPE微动摩擦磨损性能的影响[J]. 摩擦学学报, 2015, 35(4): 441-447. WANG Q F, WANG H L, WANG X Y, et al effect of surface roughness on fretting wear of uhmwpe under different conditions[J]. Tribology, 2015, 35(4): 441-447 (in Chinese). |
[25] | 殷艳飞, 刘莹, 丁郭, 等. 碳纤维增强树脂基摩擦材料摩擦磨损性能[J]. 宇航材料工艺, 2016, (2): 31-35. YIN Y F, LIU Y, DING G, et al. Friction and wear properties of carbon fiber reinforced resin-based friction material[J]. Aerospace Materials & Technology, 2016, (2): 31-35 (in Chinese). |