全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2017 

取向碳纳米管膜/氰基树脂复合材料的制备与性能强化机制
Fabrication and strengthen mechanisms of aligned carbon nanotube sheet/cyano resin composites

DOI: 10.13801/j.cnki.fhclxb.20170323.002

Keywords: 碳纳米管膜,热牵伸,取向,复合材料,拉伸性能
CNT film
,hot-stretching,alignment,composites,tensile properties

Full-Text   Cite this paper   Add to My Lib

Abstract:

以浮动催化化学气相沉积法(FCCVD)碳纳米管(CNT)膜为原料,通过氰基树脂溶液浸渍法制备CNT预浸膜,然后采用热辅助牵伸和热压固化的方法制备高取向CNT膜复合材料。详细分析了热处理的温度和树脂溶液浓度对CNT预浸膜拉伸性能的影响,从而得到合适的热辅助牵伸工艺,并考察固化工艺对复合材料性能的影响。在此基础上,从浸润特性、CNT取向程度和层间剪切性能方面揭示CNT膜复合材料力学性能的强化机制。结果表明与传统CNT膜牵伸工艺相比,CNT预浸膜热牵伸工艺更有利于制备高取向CNT膜复合材料。热牵伸的温度和树脂溶液的浓度是制备高取向、低孔隙CNT预浸膜的关键因素。通过固化工艺的改变可有效调控氰基树脂的反应程度碳纳米管薄膜/氰基树脂复合材料的拉伸性能。经高温后固化处理后,CNT膜/氰基树脂复合材料的拉伸强度和模量分别高达2 748 MPa和302 GPa。优异的树脂浸润特性、层间剪切强度以及高的CNT取向度使CNT膜复合材料中CNT更有利于协同承载,从而提高其力学性能。 The CNT sheet prepregs were fabricated by cyano resin solution impregnating continuous carbon nanotube (CNT) sheet, which was prepared by floating catalyst chemical vapor deposition grown (FCCVD) method. A well aligned CNT sheet composite was fabricated by subsequent hot-stretching treatment and hot pressing process. The effects of hot-stretching temperature and resin solution concentration on the tensile properties of the CNT prepregs were analyzed and the hot-stretching process was optimized. The effect of curing cycle on the tensile properties of CNT sheet reinforced cyano resin matrix composite was studied. Through analyzing the wetting characteristics, CNT alignment and interlaminar shear strength, the strengthen mechanisms of CNT sheet reinforced cyano resin matrix composites were revealed. The results indicate that the CNT sheet prepreg hot stretching process is more beneficial for getting highly aligned CNTs within the CNT sheet reinforced cyano resin matrix composite than the traditional CNT sheet stretching process. The temperature and resin solution concentration are the key factors to prepare high property cyano resin impregnated CNT film, which has high CNT orientation and low porosity. Through changing the curing cycle, the extent of reaction of cyano resin and the tensile properties of the CNT sheet/cyano resin composite are improved. The tensile strength and modulus of the CNT sheet/cyano resin composite reach up to 2 748 MPa and 302 GPa after postprocessing. Benefited from the superior wetting property, the high interlaminar shear strength and the high alignment degree of CNTs, the CNT sheet/cyano resin composite shows high tensile properties, due to efficient load bearing inside the CNT network. 国家自然科学基金(51273007)

References

[1]  YU M F, LOURIE O, DYER M J, et al. Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load[J]. Science, 2000, 287(5453):637-640.
[2]  WONG E W, SHEEHAN P E, LIBER C M. Nanobeam mechanics:Elasticity, strength, and toughness of nanorods and nanotubes[J]. Science, 1997, 277(5334):1971-1975.
[3]  NATSUKI T, ENDO M. Stress simulation of carbon nanotubes in tension and compression[J]. Carbon, 2004, 42(11):2147-2151.
[4]  LI Y L, KINLOCH I A, WINDLE A H. Direct spinning of carbon nanotube fibers from chemical vapor deposition synthesis[J]. Science, 2004, 304(5668):276-278.
[5]  ZHONG X H, LI Y L, LIUET Y K, et al. Continuous multilayered carbon nanotube yarns[J]. Advanced Materials, 2010, 22(6):692-696.
[6]  PARK J G, LOUIS J, CHENG Q, et al. Electromagnetic interference shielding properties of carbon nanotube buckypaper[J]. Nanotechanology, 2009, 20(41):415702.
[7]  XU H, ANLAGE M, HU L, et al. Microwave shielding of transparent and conducting single-walled carbonnanotube films[J]. Applied Physics Letters, 2007, 90(18):183119-183121.
[8]  刘妍, 李敏, 刘千立, 等. 多壁巴基纸/环氧复合材料拉伸性能的影响因素[J]. 复合材料学报, 2012, 29(6):27-31. LIU Y, LI M, LIU Q L, et al. Influence factors on the tensile properties of MWCNT buckypaper/epoxy composites[J]. Acta Materiae Compositae Sinica, 2012, 29(6):27-31(in Chinese).
[9]  LIU Q L, LI M, GU Y, et al. Interlocked CNT networks with high damping and storage modulus[J]. Carbon, 2015, 86:46-53.
[10]  MA W, SONG L, YANG R, et al. Directly synthesized strong, highly conducting, transparent single-walled carbon nanotube films[J]. Nano Letters, 2007, 7(8):2307-2311.
[11]  LI X, YUAN G, WESTWOOD A, et al. The preparation and CVD densification of multi-walled carbon nanotube felt synthesizedbya catalytic CVD method[J]. Chemical Vapor Deposition, 2008, 14(1-2):40-45.
[12]  LIU Q L, LI M, GU Y Z, et al. Highly aligned dense carbon nanotube sheets induced by multiple stretching and pressing[J]. Nanoscale, 2014, 6(8):4338-4344.
[13]  CHENG Q, BAO J, PARK J G, et al. High mechanical performance composite conductor:Multi-walled carbon nanotube sheet/bismaleimide nanocomposites[J]. Advanced Functional Materials, 2009, 19(20):3219-3225.
[14]  ⅡJIMA S. Helical microtubules of graphitic carbon[J]. Nature, 1991, 354(6348):56-58.
[15]  KIM K H. Mechanical and thermal management characteristics of ultrahigh surface area single-walled carbon nanotube aerogels[J]. Advanced Functional Materials, 2013, 23(3):377-383.
[16]  王珍珍, 李敏, 刘千立, 等. 浮动催化CVD法CNTs膜及CNTs膜/环氧复合材料拉伸特性[J]. 复合材料学报, 2016, 33(1):44-52. WANG Z Z, LI M, LIU Q L, et al. Tensile performance of floating catalyst CVD CNT film and its composites[J]. Acta Materiae Compositae Sinica, 2016, 33(1):44-52(in Chinese).
[17]  LI M, WANG Z Z, Liu Q L, et al. Carbon nanotube film/epoxy composites with high strength and toughness[J]. Polymer Composite, 2017, 38(3):588-596.
[18]  BRADFORD P D, WANG X, ZHAO H, et al. A novel approach to fabricate high volume fraction nanocomposites with long aligned carbon nanotubes[J]. Composites Science and Technology, 2010, 70(13):1980-1985.
[19]  LIU Q L, LI M, WANG Z, et al. Improvement on the tensile performance of buckypaper using a novel dispersant and functionalized carbon nanotubes[J]. Composites:Part A, 2013, 55(6):102-109.
[20]  SMAJDA R, KUKOVECZ A, KONYA Z, et al. Structure and gas permeability of multi-wall carbonnanotube buckypapers[J]. Carbon, 2007, 45(6):1176-1184.
[21]  RIGUEUR J L, HASAN S A, MAHAJAN S V. Buckypaper fabrication by liberation of electrophoretically deposited carbon nanotubes[J]. Carbon, 2010, 48(14):4090-4099.
[22]  JIANG K, WANG J, LI Q, et al. Superaligned carbon nanotube arrays, films, and yarns:A road to applications[J]. Advanced Materials, 2011, 23(9):1154-1161.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133