全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2017 

V-型皱褶芯材承压的均质化等效模型
Homogenized equivalent model of V-type folded core under compression

DOI: 10.13801/j.cnki.fhclxb.20170321.001

Keywords: 皱褶夹芯板,等效模型,有限元分析,代理模型,刚度折减
folded core sandwich panel
,equivalent model,finite element analysis,surrogate models,stiffness reduction

Full-Text   Cite this paper   Add to My Lib

Abstract:

采用代理模型获得V-型皱褶芯材等效屈服应力、等效平台应力和几何参数之间的关系,并据此提出了一种承受静力/准静力面外压缩的V-型皱褶芯材均质化等效模型。计算结果与试验结果的对比表明:皱褶芯材的均质化等效模型可以很好地模拟原结构的弹塑性力学特性,并能大大减少计算耗时。对于皱褶夹芯板在结构中,特别是抗坠毁吸能结构中的应用,本文的等效模型提供了一种高效率的计算及优化手段。 The equivalent elasticity modulus, equivalent yield strain and equivalent plate stress of V-type folded core could be got using surrogate models. Based on the surrogate model, a homogenized equivalent model of V-type folded core under static/quasi-static compression was set up. The calculation results show that the mechanical properties of the original structure are simulated well by the homogenized equivalent model, and the computing cost is greatly reduced. The equivalent model in this paper provides an efficient way to calculate or optimize the property of folded core applied in structures, especially in anti-crash and energy absorbing structures. 江苏省普通高校研究生科研创新计划(KYLX_0298);江苏高校优势学科建设工程基金

References

[1]  丛立新, 孙雨果, 高亮, 等. 改进V-型复合材料皱褶夹芯结构的制备及压缩性能[J]. 复合材料学报, 2014, 31(2):456-464. CONG Lixin, SUN Yuguo, GAO Liang, et al. Preparation and compression preformance of an improved V-type folded GFRP sandwich structure[J]. Acta Materiae Compositae Si-nica, 2014, 31(2):456-464(in Chinese).
[2]  CONG L X, SUN Y G, WANG X Z. Bending response of foldcore composite sandwich beams[J]. Computers Materials & Continua, 2015, 47(1):1-14.
[3]  HEIMBS S, MEHRENS T, MIDDENDORF P, et al. Numerical determination of the nonlinear effective mechanical properties of folded core structures for aircraft sandwich panels[C]//6th LS-DYNA Users Conference, Gothenburg:Livemore Software Technology Corporation, 2007:29-30.
[4]  HEIMBS S. Virtual testing of sandwich core structures using dynamic finite element simulations[J]. Computational Materials Science, 2009, 45:205-216.
[5]  HEIMBS S, MIDDENDORF P, HAMPF C, et al. Aircraft sandwich structures with folded core under impact load[C]//8th International Conference on Sandwich Structures, Porto, 2008:169-380.
[6]  HEIMBS S, MIDDENDORF P, KILCHERT S, et al. Numerical simulation of advanced folded core materials for structural sandwich applications[C]//Ceas European Air and Space Conference, Linkoping, 2007:1-8.
[7]  BARANGER E, GUIDAULT P A, CLUZEL C. Numerical modeling of the geometrical defects of an origami-like sandwich core[J]. Composite Structures, 2011, 93(10):2504-2510.
[8]  KILCHERT S, JOHNSON A, VOGGENREITER H. Modelling the impact behaviour of sandwich structures with folded composite cores[C]//The International Conference on Composite Structures, 2014:16-26.
[9]  TOSO-PENTECOTE N, JOHNSON A, RITT S, et al. Impact-tolerante leichtbaustrukturen[J]. Konstruktion, 2006, 9:1-17.
[10]  GATTAS J M, YOU Z. Design and digital fabrication of folded sandwich structures[J]. Automation in Construction, 2016, 63:79-87.
[11]  LEBéE A, SAB K. Transverse shear stiffness of a chevron folded core used in sandwich construction[J]. International Journal of Solids & Structures, 2010, 47(18-19):2620-2629.
[12]  LEBéE A, SAB K. Homogenization of thick periodic plates:Application of the bending-gradient plate theory to a folded core sandwich panel[J]. International Journal of Solids & Structures, 2012, 49(19-20):2778-2792.
[13]  赖宇阳. Isight参数优化理论与实例详解[M]. 北京:北京航空航天大学出版社, 2012:157-158. LAI Yuyang. The parameter optimization theory and example explanation of Isight[M]. Beijing:Beihang University Press, 2012:157-158(in Chinese).
[14]  曾会华, 徐庆华. 皱褶芯材结构的几何设计与研究[J]. 内江科技, 2009, 30(3):84. ZENG H H, XU Q H. Study and geometric design of the folded core structure[J]. Neijiang Science, 2009, 30(3):84(in Chinese).
[15]  HEIMBS S, CICHOSZ J, KLAUS M, et al. Sandwich structures with textile-reinforced composite foldcores under impact loads[J]. Composite Structures, 2010, 92(6):1485-1497.
[16]  FISCHER S, HEIMBS S, KILCHERT S, et al. Sandwich structures with folded core:Manufacturing and mechanical behavior[C]//Sampe Europe International Conference, 2009:256-263.
[17]  HEIMBS S, CICHOSZ J, KILCHERT S, et al. Sandwich panels with cellular cores made of folded composite material:mechanical behaviour and impact performance[C]//International Conference on Composite Materials, Edinburgh, 2009:1485-1497.
[18]  KHALIULIN V L, DESYATOVX V E. On the calculation of process characteristic for the production of folder filler pa-nels[J]. Aeronantical Technique, 1992, 4:46-50.
[19]  王志谨, KHALIULIN V I. 皱褶结构芯格构型的几何设计方法[J]. 南京航空航天大学学报, 2003, 34(1):6-11. WANG Z J, KHALIULIN V I. Geometry design method of folded structure[J]. Journal oF Nanjing University of Aeronautics & Astronautics, 2003, 34(1):6-11(in Chinese).
[20]  张慧, 王志瑾. 复合材料层合板皱褶芯材当量力学性能研究[J]. 江苏航空, 2012(S1):133-136. ZHANG Hui, WANG Zhijin. Equivalent mechanical properties study of composite folded core sandwich structure[J]. Jiangsu Aviation, 2012(S1):133-136(in Chinese).
[21]  张延昌, 王自力, 张世联. 折叠式夹芯层结构耐撞性能研究[J]. 船舶力学, 2010, 14(z1):114-120. ZHANG Yanchang, WANG Zili, ZHANG Shilian. Simulation analysis of folded core structure under dynamic load[J]. Journal of Ship Mechanics, 2010, 14(z1):114-120(in Chinese).
[22]  张延昌, 俞鞠梅, 张世联, 等. V型折叠式夹层板横向压皱吸能特性研究[J]. 振动与冲击, 2014, 33(1):113-118. ZHANG Yanchang, YU Jumei, ZHANG Shilian, et al. Energy absorption of V-type corrugated cores sandwich panels under lateral crushing[J]. Journal of Vibration and Shock, 2014, 33(1):113-118(in Chinese).
[23]  蔡克乾. 复合材料折叠夹芯结构制备及力学性能研究[D]. 大连:大连理工大学, 2015. CAI Keqian. Manufacture and mechanical behaviot study of composite folded core sandwich structure[D]. Dalian:Dalian University of Technology, 2015(in Chinese).
[24]  任永锋. 皱褶夹芯结构的基本力学性能研究[D]. 哈尔滨:哈尔滨工业大学, 2014. REN Yongfeng. Study on basic mechanical peoperties of foldcore sandwich sturctures[D]. Harbin:Harbin Institute of Technoloy, 2014(in Chinese).
[25]  SⅡVOLA J T, SHU M, TAKEDA N. Unloading response prediction of indentation loaded foam core sandwich structures using extended foam material model with tensile hardening[J]. Composites Part B:Engineering, 2016, 84:71-82.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133