|
- 2017
基于改进粒子群算法的径向基人工神经网络淀粉基发泡复合材料性能预测
|
Abstract:
以乙烯-醋酸乙烯酯(EVA)和淀粉质量比、甘油质量分数和NaHCO3质量分数为输入,以拉伸强度和回弹率为输出,建立基于种群熵多样性评估和收敛、发散策略的粒子群改进算法的径向基人工神经网络(RBF ANN)的淀粉基发泡复合材料性能预测模型。结果表明,该模型的预测效果较好,预测均方差和相关系数分别为0.0160和0.9890。预测发现,淀粉基发泡复合材料的拉伸强度随甘油含量的增加而缓慢降低,随NaHCO3含量的增加先减少后增加;回弹率随甘油含量的增加而递增,随NaHCO3含量的增加而先增加后减少。 A prediction model of starch matrix foam composites by radial basis function artificial neural network (RBF ANN) based on chaotic self-adaptive particle swarm optimization algorithm with population entropy diversity and convergence divergence strategy was established. The input variables of this model included ethylene-vinyl acetate (EVA)/starch mass ratio, glycerin content and NaHCO3 content, and the output variables were tensile strength and rebound rate. The results show that the proposed model has a good performance. The root mean square error of prediction and correlation coefficient are 0.0160 and 0.9890, respectively. The prediction results show that the tensile strength of starch matrix foam composites reduces slowly with the increase of glycerin content, and it reduces firstly and then increases with the increase of NaHCO3 content. The rebound rate increases with the increase of glycerin content, and it increases firstly and then decreases with the increase of NaHCO3 content in the starch matrix composites. 国家自然科学基金(51663001;51463015)
[1] | BARRON L P, MCENEFF G L. Gradient liquid chromatographic retention time prediction for suspect screening applications:A critical assessment of a generalised artificial neural network-based approach across 10 multi-residue reversed-phase analytical methods[J]. Talanta, 2016, 147:261-270. |
[2] | ZHOU W, WU S B, DAI Z J, et al. Nonlinear QSAR models with high-dimensional descriptor selection and SVR improve toxicity prediction and evaluation of phenols on photobacterium phosphoreum[J]. Chemometrics and Intelligent Laboratory Systems, 2015, 145:30-38. |
[3] | JALEM R, NAKAYAMA M, KASUGA T. An efficient rule-based screening approach for discovering fast lithium ion conductors using density functional theory and artificial neural networks[J]. Journal of Materials Chemistry A, 2014, 2(3):720-734. |
[4] | 曾广胜, 孙刚. 基于BP神经网络的生物质发泡材料性能预测模型及应用[J]. 复合材料学报, 2014, 31(1):107-111. ZENG Guangsheng, SUN Gang. Prediction model and app-lication of biological foaming materials based on BP neural network[J]. Acta Materiae Compositae Sinica, 2014, 31(1):107-111(in Chinese). |
[5] | 曾广胜, 孙刚. 工艺参数对淀粉/EVA生物质材料挤出发泡的影响及BP神经网络的预测[J]. 复合材料学报, 2014, 31(2):512-517. ZENG Guangsheng, SUN Gang. Influence of technological parameters on extrusion foaming of starch/EVA biologicmaterials and BP neural network forecast[J]. Acta Materiae Compositae Sinica, 2014, 31(2):512-517(in Chinese). |
[6] | HAMADACHE M, BENKORTBI O, HANINI S, et al. A quantitative structure activity relationship for acute oral toxicity of pesticides on rats:Validation, domain of application and prediction[J]. Journal of Hazardous Materials, 2016, 303:28-40. |
[7] | ZHANG Y Y, PAN B C. Modeling batch and column phosphate removal by hydrated ferric oxide-based nanocomposite using response surface methodology and artificial neural network[J]. Chemical Engineering Journal, 2014, 249:111-120. |
[8] | WU Y, LIU B X, LI M S, et al. Prediction of CO2 solubility in polymers by radial basis function artificial neural network based on chaotic self-adaptive particle swarm optimization and fuzzy clustering method[J]. Chinese Journal of Chemistry, 2013, 31(12):1564-1572. |
[9] | KOC D I, KOC M L. A genetic programming-based QSPR model for predicting solubility parameters of polymers[J]. Chemometrics and Intelligent Laboratory Systems, 2015, 144:122-127. |
[10] | KHAZAEI A, SARMASTI N, SEYF J Y. Quantitative structure-activity relationship of the curcumin-related compounds using various regression methods[J]. Journal of Molecular Structure, 2016, 1108:168-178. |
[11] | LI M S, HUANG X Y, LIU H S, et al. Solubility prediction of supercritical carbon dioxide in 10 polymers using radial basis function artificial neural network based on chaotic self-adaptive particle swarm optimization and K-harmonic means[J]. Rsc Advances, 2015, 5(56):45520-45527. |
[12] | WANG Y, HUANG J J, ZHOU N, et al. Incorporating PLS model information into particle swarm optimization for descriptor selection in QSAR/QSPR[J]. Journal of Chemometrics, 2015, 29(12):627-636. |
[13] | 李孟山, 黄兴元, 柳和生, 等. 基于混沌自适应粒子群人工神经网络的气体在聚合物中的溶解模型[J]. 化学学报, 2013, 71(7):1053-1058. LI M S, HUANG X Y, LIU H S, et al. Solubility prediction of gases in polymers based on chaotic self-adaptive particle swarm optimization artificial neural networks[J]. Acta Chi-mica Sinica, 2013, 71(7):1053-1058(in Chinese). |
[14] | FATEEN S E K, BONILLA-PETRICIOLET A. A note on effective phase stability calculations using a gradient-based cuckoo search algorithm[J]. Fluid Phase Equilibria, 2014, 375(6):360-366. |
[15] | FATEEN S E K, BONILLA-PETRICIOLET A. Unconstrained gibbs free energy minimization for phase equilibrium calculations in nonreactive systems, using an improved cuckoo search algorithm[J]. Industrial & Engineering Chemistry Research, 2014, 53(26):10826-10834. |
[16] | ZHAO D H, PENG C W, ZHOU J. Lipase adsorption on different nanomaterials:A multi-scale simulation study[J]. Physical Chemistry Chemical Physics, 2015, 17(2):840-850. |
[17] | HARPER K C, VILARDI S C, SIGMAN M S. Prediction of catalyst and substrate performance in the enantioselective propargylation of aliphatic ketones by a multidimensional model of steric effects[J]. Journal of the American Chemical Society, 2013, 135(7):2482-2485. |
[18] | 张由芳, 郑玉婴, 周谦, 等. 淀粉/EVA复合发泡鞋底材料的配方设计及表征[J]. 高分子材料科学与工程, 2013, 29(2):116-119, 123. ZHANG Youfang, ZHENG Yuying, ZHOU Qian, et al. Formula design and characterizations of starch/EVA composite foamed materials[J]. Polymer Materials Science and Engineering, 2013, 29(2):116-119, 123(in Chinese). |
[19] | GORSSE S, VIVES S, BELLANGER P, et al. Multi-scale architectured thermoelectric materials in the Mg-2(Si, Sn) system[J]. Materials Letters, 2016, 166:140-144. |
[20] | QASEM S N, SHAMSUDDIN S M, HASHIM S Z M, et al. Memetic multiobjective particle swarm optimization-based radial basis function network for classification problems[J]. Information Sciences, 2013, 239(4):165-190. |
[21] | KENNEDY J, EBERHART R. Particle swarm optimization[C]//In 1995 IEEE International Conference on Neural Networks Proceedings. Perth:IEEE Australia Council, 1995:1942-1948. |
[22] | ZHANG Z B, JIANG Y Z, ZHANG S H, et al. An adaptive particle swarm optimization algorithm for reservoir operation optimization[J]. Applied Soft Computing, 2014, 18(4):167-177. |
[23] | GE C F, LANSING B, ALD R. Starch foams containing biomass from the second generation cellulosic ethanol production[J]. Journal of Applied Polymer Science, 2015, 132(18):41940-41946. |
[24] | FISCHLSCHWEIGER M, ENDERS S. A Theory for solubility of semicrystalline and branched polymers in one solvent[J]. Macromolecules, 2014, 47(21):7625-7636. |