|
- 2017
微波辅助法制备镁合金的植酸镁/羟基磷灰石复合涂层及其耐蚀性能
|
Abstract:
采用微波辅助法在AZ31镁合金表面制备了植酸镁/羟基磷灰石(PA/HA)复合涂层。利用FESEM、EDS、XRD和电化学性能测试等方法表征涂层的表面形貌、物相组成以及耐蚀性能,探究了植酸溶液的pH值对PA/HA复合涂层形貌及耐蚀性能的影响,并通过浸泡实验研究了镁合金及PA/HA复合涂层在模拟体液(SBF)中的降解矿化行为。结果表明:在植酸预处理中,植酸溶液的pH=5.0时制备得到的PA/HA复合涂层表面均匀、无裂纹,与镁合金基底的界面结合良好;并且在此pH值下PA/HA复合涂层包覆镁合金样品的交流阻抗最大,自腐蚀电流密度最小,说明其耐蚀性最好。在SBF中,PA/HA复合涂层能够快速诱导磷灰石的生成,并显著提高镁合金基底的耐蚀性能。 A magnesium phytic acid/hydroxyapatite composite coating was rapidly prepared on AZ31 Mg alloy substrate by microwave assisted method. The surface morphology and composition, as well as the corrosion resistance, were characterized by FESEM, EDS, XRD and electrochemical tests. The influence of pH value of phytic acid solution on the microstructure and corrosion resistance of the magnesium phytic acid/hydroxyapatite coatings was investigated. The biodegradation and biomineralization behavior of Mg alloy and its coatings in simulated body fluid (SBF) were evaluated via immersion tests. The results show that when the pH value of phytic acid solution is 5.0, the magnesium phytic acid/hydroxyapatite composite coating is uniform and crack-free, with a good interface bonding to the substrate. The electrochemical measurements in SBF reveal that magnesium phytic acid/hydroxyapatite coating with pH=5.0 exhibits the best corrosion resistance compared with those with other pH values. The magnesium phytic acid/hydroxyapatite composite coating can induce apatite deposition and effectively improve the corrosion resistance of Mg alloy in SBF. 国家自然科学基金(51572186;51372166);天津市自然科学基金(15JCYBJC47500)
[1] | HORNBERGER H, VIRTANEN S, BOCCACCINI A R. Biomedical coatings on magnesium alloys-A review[J]. Acta Biomaterialia, 2012, 8(7):2442-2455. |
[2] | XIN Y, HU T, CHU P K. In vitro studies of biomedical magnesium alloys in a simulated physiological environment:A review[J]. Acta Biomaterialia, 2011, 7(4):1452-1459. |
[3] | 张春艳. 镁合金表面生物陶瓷涂层制备及其降解行为的研究[D]. 重庆:重庆大学, 2011. ZHANG Chunyan. The study on preparation and biodegradation behavior of bioceramic coatings on magnesium alloy[D]. Chongqing:Chongqing University, 2011(in Chinese). |
[4] | WANG Y, WEI M, GAO J C, et al. Corrosion process of pure magnesium in simulated body fluid[J]. Materials Letters, 2008, 62(14):2181-2184. |
[5] | ZHANG E, YIN D, XU L, et al. Microstructure, mechanical and corrosion properties and biocompatibility of Mg-Zn-Mn alloys for biomedical application[J]. Materials Science and Engineering C, 2009, 29(3):987-993. |
[6] | HO Y H, VORA H D, DAHOTRE N B. Laser surface modifica-tion of AZ31B Mg alloy for bio-wettability[J]. Journal of Biomaterials Applications, 2015, 29(7):915-928. |
[7] | REN Y F, ZHOU H, NABIYOUNI M, et al. Rapid coating of AZ31 magnesium alloy with calcium deficient hydroxyapatite using microwave energy[J]. Materials Science and Engineering C, 2015, 49:364-372. |
[8] | SHEN S B, CAI S, ZHANG M, et al. Microwave assisted deposition of hydroxyapatite coating on a magnesium alloy with enhanced corrosion resistance[J]. Materials Letters, 2015, 159:146-149. |
[9] | ZHOU H, NABIYOUNI M, BHADURI S B. Microwave assisted apatite coating deposition on Ti6Al4V implants[J]. Materials Science and Engineering C, 2013, 33(7):4435-4443. |
[10] | LIU J R, GUO Y N, HUANG W D. Study on the corrosion resistance of phytic acid conversion coating for magnesium alloys[J]. Surface and Coatings Technology, 2006, 201(3-4):1536-1541. |
[11] | ZHANG R Y, CAI S, XU G H, et al. Crack self-healing of phytic acid conversion coating on AZ31 magnesium alloy by heat treatment and the corrosion resistance[J]. Applied Surface Science, 2014, 313:896-904. |
[12] | DOROZHKIN S V. Calcium orthophosphate-based biocera-mics[J]. Materials, 2013, 6(9):3840-3942. |
[13] | ZHOU H, BHADURI S. Novel microwave synthesis of amorphous calcium phosphate nanospheres[J]. Journal of Biomedical Materials Research Part B:Applied Biomaterials, 2012, 100B (4):1142-1150. |
[14] | 杨萌, 陈民芳, 由臣, 等. 纳米羟基磷灰石对Mg-Zn-Zr合金体外生物性能的影响[J]. 复合材料学报, 2011, 28(1):82-87. YANG Meng, CHEN Minfang, YOU Chen, et al. Effect of nano-hydroxyapatite on Mg-Zn-Zr alloy biological properties in vitro[J]. Acta Materiae Compositae Sinica, 2011, 28(1):82-87(in Chinese). |
[15] | ASTM Standards. Standard Practice for Laboratory Immersion Corrosion Testing of Metals:ASTM G31-72[S]. Philadelphia:ASTM Standards, 2004. |
[16] | ZHAO L C, CUI C X, WANG X, et al. Corrosion resistance and calcium-phosphorus precipitation of micro-arc oxidized magnesium for biomedical applications[J]. Applied Surface Science, 2015, 330(11):431-438. |
[17] | 张睿悦. 医用镁合金表面介孔45S5生物活性玻璃植酸转化膜复合涂层的制备及性能研究[D]. 天津:天津大学, 2015. ZHANG Ruiyue. Preparation of mesoporous 45S5 bioactive glass-ceramic/phytic acid composite coating on medical magnesium alloy and its properties[D]. Tianjin:Tianjin University, 2015(in Chinese). |
[18] | CUI X F, LI Q F, LI Y, et al. Microstructure and corrosion resistance of phytic acid conversion coatings for magnesium alloy[J]. Applied Surface Science, 2008, 255(5):2098-2103. |
[19] | ZHANG M, CAI S, SHEN S B, et al. In-situ defect repairing in hydroxyapatite/phytic acid hybrid coatings on AZ31 magnesium alloy by hydrothermal treatment[J]. Journal of Alloys and Compounds, 2016, 658:649-656. |
[20] | 黄凯, 蔡舒, 任萌果, 等. 镁合金表面介孔45S5生物玻璃陶瓷涂层的制备及体外降解性能[J]. 硅酸盐学报, 2014, 42(7):846-850. HUANG Kai, CAI Shu, REN Mengguo, et al. Preparation of mesoporous 45S5 bioactive glass-ceramic coating on magnesium alloy and its in vitro biodegradation[J]. Journal of the Chinese Ceramic Society, 2014, 42(7):846-850(in Chinese). |
[21] | SEYEDRAOUFI Z S, MIRDAMADI S. Synthesis, microstructure and mechanical properties of porous Mg-Zn scaffolds[J]. Journal of Mechanical Behavior of Biomedical Materials, 2013, 21:1-8. |
[22] | RAZAVI M, FATHI M, SAVABI O, et al. In vivo assessments of bioabsorbable AZ91 magnesium implants coated with nanostructured fluoridated hydroxyapatite by MAO/EPD technique for biomedical applications[J]. Materials Science and Engineering C, 2015, 48:21-27. |