全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2018 

E玻璃纤维增强环氧树脂基复合材料轴向拉伸力学性能的应变率效应
Influence of strain rate on tensile mechanical behavior of E glass fiber reinforced epoxy resin composites

DOI: 10.13801/j.cnki.fhclxb.20180209.007

Keywords: E玻璃纤维增强环氧树脂基复合材料,轴向拉伸,力学性能,应变率,数字图像相关性
E glass fiber reinforced epoxy resin bar
,axial tension,mechanical properties,strain rate sensitivity,digital image correlation

Full-Text   Cite this paper   Add to My Lib

Abstract:

采用MTS-810材料试验机、Zwick-HTM5020高速拉伸试验机及分离式Hopkinson拉杆(SHTB)实验装置,并结合数字图像相关性(Digital image correlation,DIC)分析方法,对E玻璃纤维增强环氧树脂基复合材料棒材在10-3~2 400 s-1应变率范围内的轴向拉伸力学性能进行了较系统的实验研究,获得了不同应变率下材料的应力-应变曲线,揭示了应变率对材料的拉伸强度和断裂应变的影响规律。通过显微分析拉伸试样的断口形貌,揭示了试样的断裂机制及对应变率的依赖性。实验结果表明:E玻璃纤维增强环氧树脂基复合材料的力学性能具有强烈的应变率效应,归一化拉伸强度随着应变率对数线性增加,而归一化断裂应变则随着对数应变率线性减小;断口显微分析显示:E玻璃纤维增强环氧树脂基复合材料的轴向拉伸断裂模式依赖于应变率,低应变率加载下试样发生沿45°方向的剪切断裂,随着应变率增大,试样断裂模式逐渐过渡到沿轴向的拉伸断裂,特别是在高应变加载下,观察到大量的玻璃纤维丝被拉断,同时环氧树脂基体也发生严重的碎裂现象,这反映了基体材料与玻璃纤维之间相互约束作用在增强。 Using MTS-810 material testing machine, Zwick-HTM5020 high speed tensile testing machine and split Hopkinson tension bar (SHTB) apparatus, combined with digital image correlation method, the tensile mechanical properties of the E glass fiber reinforced epoxy resin composites were studied systematically in the range of strain rates of 10-3-2 400 s-1.The stress-strain curves under different strain rates were obtained, and the influences of strain rate on tensile strength and fracture strain were investigated. The fracture morphology of the tensile specimen was analyzed, and the dependence of fracture mechanism on the strain rate was explored. The results reveal that the normalized tensile strength increases linearly with the logarithm of strain rate, while the normalized fracture strain decreases linearly with the log strain rate. Fractography shows that the main fracture mode of the specimen is shear fracture along 45° direction at low strain rate. With the increasing of strain rate, the fracture mode gradually transforms shear fracture to axial tensile fracture. At high strain rate, it is observed that a large number of glass fibers are broken, and the epoxy resin matrix has serious fragmentation phenomenon, which reflects the strong restraint effect between the epoxy resin matrix and the glass fiber. 国家自然科学基金(11472142)

References

[1]  RICCIARDI M R, PAPA I, LANGELLA A, et al. Mechanical properties of glass fibre composites based on nitrile rubber toughened modified epoxy resin[J]. Composites Part B:Engineering, 2018, 39:259-267.
[2]  SINGH A A M M, RAJ F M, FRANCO P A, et al. Evaluation of mechanical behavior of multifilament discarded fishnet/glass fiber and polyester composites for marine applications[J]. Marine Structures, 2018, 58:361-366.
[3]  张磊, 孙清, 王虎长. E玻璃纤维增强环氧树脂基复合材料力学性能试验研究[J]. 电力建设, 2010, 9(31):118-121. ZHANG Lei, SUN Qing, WANG Huchang. Experimental study on mechanical properties of glass fiber reinforced epoxy resin matrix composites[J]. Electric Power Construction, 2010, 9(31):118-121(in Chinese).
[4]  张硕, 姚宁, 吴继. E玻璃纤维增强环氧树脂复合材料的力学性能[J]. 电力建设, 2016, 1(1):11-14. ZHANG Shuo, YAO Ning, WU Ji. Mechanical properties of E glass fiber reinforced epoxy composites[J]. Electric Power Construction, 2016, 1(1):11-14(in Chinese).
[5]  王启强, 彭龙贵. 玻璃纤维增强环氧树脂复合材料的力学性能研究[J]. 化工时刊, 2016, 7(30):4-7. WANG Qiqiang, PENG Longgui. Mechanical properties of E glass fiber reinforced epoxy composites[J]. Chemical Industry Times, 2016, 7(30):4-7(in Chinese).
[6]  NARESH K, SHANKAR K, VELMURUGAN R. Effect of high strain rate on glass/carbon/hybrid fiber reinforced epoxy laminated composites[J]. Composites Part B:Engineering, 2016, 100:125-135.
[7]  GURUSIDESWAR S, SRINICASAN N. Tensile response of epoxy and glass/epoxy composites at low and medium strain rate regimes[J]. Procedia Engineering, 2017, 173:686-693.
[8]  GURUSIDESWAR S, VELMURUGANA R, GUPTA N K. Study of rate dependent behavior of glass/epoxy composites with nanofillers using non-contact strain measurement[J]. International Journal of Impact Engineering, 2017, 110:324-337.
[9]  SUTTON M A, ORTEU J J, SCHREIER H. Image correlation for shape, motion and deformation measurements:Basic concepts, theory and applicants[M]. New York:Spring, 2009.
[10]  KOLSKY H. An investigation of the mechanical properties of materials at very high rates of loading loading[J]. Proceedings of the Physical Society of London, 1949, 62(11):676-700.
[11]  CHEN W, SONG B. Split Hopkinson(Kolsky) bar:Design, testing and application[M]. New York:Springer, 2011.
[12]  董立民, 夏源明, 杨报昌. 纤维束的冲击拉伸实验研究[J]. 复合材料学报, 1990, 4(7):9-15. DONG Limin, XIA Yuanming, YANG Baochang. Experimental study on impact tension of fiber bundles[J]. Acta Materiae Compositae Sinica, 1990, 4(7):9-15(in Chinese).
[13]  夏源明, 王兴, 杨报昌. 单向玻璃纤维增强环氧树脂在冲击拉伸时的一维本构方程[J]. 复合材料学报, 1994, 4(11):110-116. XIA Yuanming, WANG Xing, YANG Baochang. One-dimensional constitutive equation of unidirectional glass fiber reinforced epoxy resin under impact tension[J]. Acta Materiae Compositae Sinica, 1994, 4(11):110-116(in Chinese).
[14]  薛晓敏, 孙清, 王虎长. 玻璃纤维增强环氧树脂基复合材料受压管件稳定性试验及理论研究[J]. 工程力学, 2013, 30(9):251-258. XUE Xiaomin, SUN Qing, WANG Huchang. Study on stability test and theoretical study of glass fiber reinforced epoxy resin matrix composites[J]. Engineering Mechanics, 2013, 30(9):251-258(in Chinese).
[15]  HANIF A, PARTFASARATHY P, LU Z, et al. Fiber-reinforced cementitious composites incorporating glass cenospheres-Mechanical properties and microstructure[J]. Construction and Building Materials, 2017, 154:529-538.
[16]  吴健, 王纬波, 李泓运, 等. 中等应变率下单向玻璃纤维增强复合材料的剪切本构关系[J]. 复合材料学报, 2018, 35(1):64-72. WU Jian, WANG Weibo, LI Hongyun, et al. Shear constitutive relationship of unidirectional glass fiber reinforced composites under intermediate strain rate[J]. Acta Materiae Compositae Sinica, 2018, 35(1):64-72(in Chinese).
[17]  沈玲燕, 李永池, 王志海, 等. 三维正交机织玻璃纤维/环氧树脂复合材料动态力学性能的实验和理论研究[J]. 复合材料学报, 2012, 4(2):157-162. SHEN L Y, LI Y C, WANG Z H, et al. Experimental and theoretical study on dynamic mechanical properties of 3D orthogonal woven fiber glass/epoxy resin composites[J]. Acta Materiae Compositae Sinica, 2012, 4(2):157-162(in Chinese).
[18]  赵培仲, 戴京涛, 吉伯林, 等. 光固化玻璃纤维/EP-PBMA树脂复合材料的力学性能[J]. 复合材料学报, 2014, 5(31):1186-1191. ZHAO P Z, DAI J D, JI B L, et al. Mechanical properties of UV-Curable fiberglass cloth/EP-PBMA resin composites[J], Acta Materiae Compositae Sinica, 2014, 5(31):1186-1191(in Chinese).
[19]  曾帅, 贾智源, 侯博, 等. 碳纤维-玻璃纤维层内混杂单向增强环氧树脂复合材料拉伸性能[J]. 复合材料学报, 2016, 2(33):297-304. ZENG Shuai, JIA Zhiyuan, HOU Bo, et al. Carbon fiber-Glass fiber layer mixed unidirectional reinforced epoxy resin composite tensile properties[J]. Acta Materiae Compositae Sinica, 2016, 2(33):297-304(in Chinese).
[20]  SHOKRIEH M M, OMIDI M J. Compressive response of glass-fiber reinforced polymeric composites to increasing compressive strain rates[J]. Composite Structures, 2009, 89(4):517-523.
[21]  CHEN W S, MENG Q F, HAO H. Quasi-static and dynamic tensile properties of fiber glass/epoxy laminate sheet[J]. Construction and Building Materials, 2017, 143:247-258.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133