全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2018 

脆性及准脆性开裂界面的剪胀内聚力模型
Cohesive zone model with dilation for brittle and quasi-brittle cracking interfaces

DOI: 10.13801/j.cnki.fhclxb.20171128.006

Keywords: 复合模式断裂,界面性能,脱粘,界面损伤,界面分离,有限元方法
mixed mode fracture
,interfacial properties,debonding,interface damage,interface separation,finite element method

Full-Text   Cite this paper   Add to My Lib

Abstract:

根据界面剪胀与Ⅱ型断裂能间的关系,给出构造含剪胀效应张力-位移关系的新途径,该方法先假定Ⅱ型张力-位移关系,再计算界面剪胀函数,从而更易于应用。通过定义基于能量和界面不连续位移的4个损伤变量,给出含剪胀效应的损伤张力-位移关系表示形式,使模型不仅能模拟单调加载问题,而且可模拟反复加载问题。对界面在受压状态下的切向粘结强度、法向位移和摩擦作用分别进行了讨论,给出了相应的计算方法或取值建议。最后通过一个张力-位移关系的实例讨论了界面压力作用、复合模式开裂、卸载-再加载行为和接触罚刚度对法向位移的影响等模型性质。 According to the relationship between interface dilation and mode Ⅱfracture energy, a new way of constructing traction-separation law with dilation was presented. The method, by first assuming the mode Ⅱ traction-separation relationship, and then deriving the interface dilation, was easier to apply. Defining four damage variables based on the interface separation and fracture energy, traction-separation laws with dilation considering damage effects were further given. This enables the model to simulate not only the monotonic loading problems but also reversed loading problems. In addition, interface tangential bonding strength, normal separation, and friction effect under interfacial pressure were discussed respectively, which led to corresponding computing methods or recommended value. Finally, an example of traction-separation law with dilation considering damage was proposed. Utilizing finite element method, interface pressure, mixed mode effect, unloading and reloading behavior, and effects of contact penalty stiffness on normal separation were investigated thoroughly. 陕西省建设科技计划(2016-K83)

References

[1]  BARENBLATT G I. The formation of equilibrium cracks during brittle fracture. General ideas and hypotheses. Axially-symmetric cracks[J]. Journal of Applied Mathematics & Mechanics, 1959, 23(3):622-636.
[2]  DUGDALE D S. Yielding of steel sheets containing slits[J]. Journal of the Mechanics & Physics of Solids, 1960, 8(2):100-104.
[3]  HILLERBORG A, MODéER M, PETERSSON P E. Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements[J]. Cement and Concrete Research, 1976, 6(6):773-781.
[4]  LU Zixing, XU Qiang. Cohesive zone modeling for viscoplastic behavior at finite deformations[J]. Composites Science and Technology, 2013, 74(4):173-178.
[5]  XU Qiang, LU Zixing. An elastic-plastic cohesive zone model for metal-ceramic interfaces at finite deformations[J]. International Journal of Plasticity, 2013, 41(2):147-164.
[6]  LU Zixing, WANG Chengyu, XIA Biao, et al. Effect of interfacial properties on the uniaxial tensile behavior of three-dimensional braided composites[J]. Computational Materials Science, 2013, 79(436):547-557.
[7]  卢子兴. 复合材料界面的内聚力模型及其应用[J]. 固体力学学报, 2015, 36(s1):85-94.LU Zixing. A simple review for cohesive zone models of composite interface and their applications[J]. Chinese Journal of Solid Mechanics, 2015, 36(s1):85-94(in Chinese).
[8]  KUNA M, ROTH S. General remarks on cyclic cohesive zone models[J]. International Journal of Fracture, 2016, 196(1):147-167.
[9]  LIU Jinxiang, LI Jun, WU Bo. The cohesive zone model for fatigue crack growth[J]. Advances in Mechanical Engineering, 2013(4):1-16.
[10]  S?RENSEN B F, GOUTIANOS S. Mixed mode cohesive law with interface dilatation[J]. Mechanics of Materials, 2014, 70(1):76-93.
[11]  杨应华, 郭生栋. 含剪胀效应界面张力-位移关系的一种构造方法[J]. 复合材料学报, 2017, 34(12):2890-2901.YANG Yinghua, GUO Shengdong. A method for determining interfacial traction-separation law with dilatancy[J]. Acta Materiae Compositae Sinica, 2017, 34(12):2890-2901(in Chinese).
[12]  GOYAL V K, JOHNSON E R, DáVILA C G. Irreversible constitutive law for modeling the delamination process using interfacial surface discontinuities[J]. Composite Structures, 2004, 65(3):289-305.
[13]  XU X P. NEEDLEMAN A. Void nucleation by inclusion debonding in a crystal matrix[J]. Modelling and Simulation in Materials Science and Engineering, 1993, 1(2):111-132.
[14]  NEEDLEMAN A. A continuum model for void nucleation by inclusion debonding[J]. Journal Applied Mechanics, 1987, 54(3):525-531.
[15]  TVERGAARD V. Effect of fibre debonding in a whisker-reinforced metal[J]. Materials Science & Engineering A, 1990, 125(2):203-213.
[16]  LIN G, GEUBELLE P H, SOTTOS N R. Simulation of fiber debonding with friction in a model composite pushout test[J]. International Journal of Solids & Structures, 2001, 38(46):8547-8562.
[17]  王振清, 雷红帅, 周博, 等. 基于内聚力模型的形状记忆合金短纤维增强树脂基复合材料的模拟分析[J]. 复合材料学报, 2012, 29(5):236-243.WANG Zhenqing, LEI Hongshuai, ZHOU Bo, et al. Simulation and analysis on short-cut shape memory alloy reinforced epoxy composite based on cohesive zone model[J]. Acta Materiae Compositae Sinica, 2012, 29(5):236-243(in Chinese).
[18]  DáVILA C G. A damage model for the simulation of delamination in advanced composites under variable-mode loading[J]. Mechanics of Materials, 2006, 38(11):1072-1089.
[19]  S?RENSEN B F, GOUTIANOS S, JACOBSEN T K. Strength scaling of adhesive joints in polymer-matrix compo-sites[J]. International Journal of Solids & Structures, 2009, 46(3):741-761.
[20]  于飞, 陈向明, 张阿盈, 等. 一种改进的内聚力损伤模型在复合材料层合板低速冲击损伤模拟中的应用[J]. 复合材料学报, 2015, 32(6):1745-1753.YU Fei, CHEN Xiangming, ZHANG Aying, et al. Application of modified cohesive zone damage model in damage simulation of composite laminates subject to low-velocity impact[J]. Acta Materiae Compositae Sinica, 2015, 32(6):1745-1753(in Chinese).
[21]  ROTH S, HVTTER G, KUNA M. Simulation of fatigue crack growth with a cyclic cohesive zone model[J]. International Journal of Fracture, 2014, 188(1):23-45.
[22]  TVERGAARD V, HUTCHINSON J W. The relation between crack growth resistance and fracture process parameters in elastic-plastic solids[J]. Journal of the Mechanics and Physics of Solids, 1992, 40(6):1377-1397.
[23]  SCHEIDER I. Cohesive model for crack propagation analyses of structures with elastic-plastic material behavior:Foundations and implementation[R]. Geesthacht, Germany:GKSS Research Center, Dept. WMS., 2001.
[24]  CAMANHO P P, DAVILA C G, DE MOURA M F. Numerical simulation of mixed-mode progressive delamination in composite materials[J]. Journal of Composite Materials, 2003, 37(16):1415-1438.
[25]  XU Yangjian, YUAN Huang. Computational analysis of mixed-mode fatigue crack growth in quasi-brittle materials using extended finite element methods[J]. Engineering Fracture Mechanics, 2009, 76(2):165-181.
[26]  YANG B, MALL S, RAVI-CHANDAR K. A cohesive zone model for fatigue crack growth in quasibrittle materials[J]. International Journal of Solids & Structures, 2001, 38(22):3927-3944.
[27]  AREIAS P M A, RABCZUK T. Quasi-static crack propagation in plane and plate structures using set-valued traction-separation laws[J]. International Journal for Numerical Methods in Engineering, 2008, 74(3):475-505.
[28]  CHABOCHE J L, GIRARD R, SCHAFF A. Numerical analysis of composite systems by using interphase/interface models[J]. Computational Mechanics, 1997, 20(1):3-11.
[29]  ROE K L, SIEGMUND T. An irreversible cohesive zone model for interface fatigue crack growth simulation[J]. Engineering Fracture Mechanics, 2003, 70(2):209-232.
[30]  汉莫德, 江涛, 吴智敏. 侧向拉力下光圆钢筋与自密实轻骨料混凝土的粘结性能[J]. 武汉理工大学学报(交通科学与工程版), 2016, 40(4):714-718.HAN Mode, JIANG Tao, WU Zhimin. Bond behavior of plain round bars in self-compacting lightweight concrete subjected to lateral tension[J]. Journal of Wuhan University of Technology(Transportation Science and Engineering), 2016, 40(4):714-718(in Chinese).
[31]  LIU Jinxiang, YUAN Huang, LIAO Ridong. Prediction of fatigue crack growth and residual stress relaxations in shot-peened material[J]. Materials Science & Engineering A, 2010, 527(21):5962-5968.
[32]  ALFANO G, SACCO E. Combining interface damage and friction in a cohesive-zone model[J]. International Journal for Numerical Methods in Engineering, 2006, 68(5):542-582.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133