|
- 2018
高延性纤维增强偏高岭土-粉煤灰基地聚合物在不同环境下的自愈合性能
|
Abstract:
在1%、2%及3%不同程度预加单轴直接拉伸应变破坏下,研究了3天、7天及28天龄期的高延性聚乙烯醇(PVA)纤维增强偏高岭土-粉煤灰基地聚合物(PVA/MK-FA EGC)在空气中和干湿循环条件下的裂缝分布及自愈合性能。结果表明:PVA/MK-FA EGC结合了传统高延性纤维增强水泥基复合材料(ECC)及地聚合物二者的优点,表现出了明显的多缝开裂特性和应变硬化行为。2~5 mm的裂缝间距、小于25 μm的最大残余裂缝宽度给裂缝的自愈合提供了更加有利的条件。带缝试件在不同环境中自愈合后,裂缝数量大大下降,极限拉伸应变可达3.8%以上,大部分试件的极限拉应变及最终应力均能超过对比试件,空气中的养护环境更加有利于PVA/MK-FA EGC材料的自愈合。裂缝内颗粒表面覆盖有凝胶状的地聚合产物,可能增强了体系中的纤维/基体界面,使力学性能恢复。 The crack distribution and self-healing characteristics of engineered geopolymer composites using metakaolin and fly ash (PVA/MK-FA EGC) at various pre-loadings of 1%, 2% and 3% under air and wet/dry conditioning cycles were investigated at age of 3 days, 7 days and 28 days. The results show that PVA/MK-FA EGC combines the advantages of traditional engineered cementitious composite(ECC) and geopolymer, exhibiting obvious multiple cracking pattern and a strain-hardening behavior. The crack spacing is in the range of 2-5 mm and the maximum residual crack width is below 25 μm, which provide more favorable conditions for self-healing. After self-healing under different environments, number of crack decreases significantly. The ultimate tensile strain can exceed 3.8%, and both ultimate tensile strain and tensile strength capacity of the majority specimens at reloading are higher than the control specimens. Air conditioning can favor the self-healing of the PVA/MK-FA EGC materials. The surface of the particles in the crack is covered with geopolymeric gel, which may enhance the bond of fiber and matrix, resulting in the recovery of the mechanical properties. 国家自然科学基金(51508329)
[1] | HUANG H L, YE G, SHUI Z H. Feasibility of self-healing in cementitious materials-By using capsules or a vascular system[J]. Construct Building Materials, 2014, 63(2):108-118. |
[2] | MAES M, TITTELBOOM K V, BELIE N D. The efficiency of self-healing cementitious materials by means of encapsulated polyurethane in chloride containing environments[J]. Construct Building Materials, 2014, 71:528-537. |
[3] | WANG S, LI V C. Engineered cementitious composites with high volume fly ash[J]. ACI Matering Journal, 2007, 104(3):233-241. |
[4] | LEPECH M D, LI V C, ROBERTSON R E, et al. Design of green engineered cementitious composites for improved sustainability[J]. ACI Materials Journal, 2008, 105(6):567-575. |
[5] | WAN Q, RAO F, SONG S, et al. Combination formation in the reinforcement of metakaolin geopolymers with quartz sand[J]. Cement & Concrete Composites, 2017, 80:115-122. |
[6] | LI V C, WU S, WANG A. Interface tailoring for strain-hardening PVA-ECC[J]. ACI Materials Journal, 2002, 99(5):463-472. |
[7] | ZHANG Z G, ZHANG Q. Matrix tailoring of engineered cementitious composites(ECC) with non-oil-coated, low tensile strength PVA fiber[J]. Construct Building Materials, 2018, 161:420-431. |
[8] | OHNO M, LI V C. A feasibility study of strain hardening fiber reinforced fly ash-based geopolymer composites[J]. Construct Building Materials, 2014, 57(5):163-168. |
[9] | 中华人民共和国国家标准化管理委员会. 用于水泥和混凝土中的粉煤灰:GB/T 1596-2005[S]. 北京:中国标准出版社, 2005. Standardization Administration of the People's Republic of China. Fly ash used for cement and concrete:GB/T 1596-2005[S]. Beijing:Standards Press of China, 2005(in Chinese). |
[10] | SAHMARAN M, LI V C. Durability properties of micro-cracked ECC containing high volumes fly ash[J]. Cement & Concrete Research, 2009, 39(11):1033-1043. |
[11] | 阚黎黎, 施惠生, 翟广飞, 等. 高延展性纤维增强水泥基复合材料自愈合行为[J]. 硅酸盐学报, 2011, 39(4):682-689. KAN Lili, SHI Huisheng, ZHAI Guangfei, et al. Self-healing behavior of engineered cementitious composites materials[J]. Journal of the Chinese Ceramic Society, 2011, 39(4):682-689(in Chinese). |
[12] | WU M, JOHANNESSON B, GEIKER M. A review:Self-healing in cementitious materials and engineered cementitious composite as a self-healing material[J]. Construct Building Materials, 2012, 28(1):571-583. |
[13] | QIAN S Z, ZHOU J, ROOJJ M D, et al. Self-healing behavior of strain hardening cementitious composites incorporating local waste materials[J]. Cement & Concrete Composites, 2009, 31(9):613-621. |
[14] | QIAN S Z, ZHOU J, SCHLANGEN E. Influence of curing condition and precracking time on the self-healing behavior of engineered cementitious composites[J]. Cement & Concrete Composites, 2010, 32:686-693. |
[15] | 施惠生, 夏明, 郭晓潞. 粉煤灰基地聚合物反应机理及各组分作用的研究进展[J]. 硅酸盐学报, 2013, 41(7):972-980. SHI Huisheng, XIA Ming, GUO Xiaolu. Research development on mechanism of fly ash-based geopolymer and effect of each component[J]. Journal of the Chinese Ceramic Society, 2013, 41(7):972-980(in Chinese). |
[16] | 徐世烺, 李贺东. 超高韧性水泥基复合材料研究进展及其工程应用[J]. 土木工程学报, 2008, 41(6):45-60. XU Shilang, LI Hedong. A review on the development of research and application of ultra high toughness cementitious composites[J]. China Civil Engineering Journal, 2008, 41(6):45-60(in Chinese). |
[17] | KAN L L, SHI H S. Investigation of self-healing behavior of engineered cementitious composites(ECC) materials[J]. Construct Building Materials, 2012, 29(4):348-356. |
[18] | 林建辉, 余江滔, LI V C. PVA纤维增强水泥基复合材料热处理后的力学性能[J]. 复合材料学报, 2016, 33(1):116-122. LIN Jianhui, YU Jiangtao, LI V C. Mechanical properties of PVA fiber reinforeed engineered cementhious composites after thermal treatment[J]. Acta Materiae Compositae Sinica, 2016, 33(1):116-122(in Chinese). |
[19] | KIM J K, KIM J S, HA G J, et al. Tensile and fiber dispersion performance of ECC (engineered cementitious compo-sites) produced with ground granulated blast furnace slag[J]. Cement & Concrete Research, 2007, 37(7):1096-1105. |
[20] | ZHANG J, LI V C. Monotonic and fatigue performance in bending of fiber-reinforced engineered cementitious composite in overlay system[J]. Cement Concrete Research, 2002, 32(3):415-423. |
[21] | DAVIDOVITS J. Geopolymer chemistry and applications[M]. Saint Quentin:Geopolymer Institute, 2008. |
[22] | FERNNDEZ JIMENEZ A, PALOMO A, CRIADO M. Microstructure development of alkali activated fly ash cement:A descriptive model[J]. Cement & Concrete Research, 2005, 35(6):1024-1029. |
[23] | 曹明莉, 许玲, 张聪. 高延性纤维增强水泥基复合材料的微观力学设计、性能及发展趋势[J]. 硅酸盐学报, 2015, 43(5):632-642. CAO Mingli, XU Ling, ZHANG Cong. Review on micromechanical design, performance and development tendency of engineered cementitious composite[J]. Journal of the Chinese Ceramic Society, 2015, 43(5):632-642(in Chinese). |
[24] | SAHA S, CHANDRASEKARAN R. Enhancement of the properties of fly ash based geopolymer paste by incorporating ground granulated blast furnace slag[J]. Construct Building Materials, 2017, 145:615-620. |
[25] | BANG Y L, CHO C G, LIM H J, et al. Strain hardening fiber reinforced alkali-activated mortar-A feasibility study[J]. Construct Build Mater, 2012, 37(12):15-20. |
[26] | SCRIVENER K L, KIRKPATRICK R J. Innovation in use and research on cementitious material[J]. Cement & Concrete Research, 2008, 38(2):128-136. |
[27] | 张云升, 孙伟, 李宗津. PVA短纤维增强粉煤灰-地聚合物基挤压复合材料的动态行为[J]. 复合材料学报, 2009, 26(3):147-154. ZHANG Yunsheng, SUN Wei, LI Zongjin. Dynamical behavior of PVA short fiber reinforced fly ash-geopolymeric extrusion composite[J]. Acta Materiae Compositae Sinica, 2009, 26(3):147-154(in Chinese). |
[28] | KENNETH R L, FLOYD O S. Autogenous healing of cement paste[J]. ACI Structural Journal, 1956, 52(6):52-63. |
[29] | 张云升, 孙伟, 李宗津. PVA短纤维和粉煤灰对地聚合物基复合材料流变学行为和弯曲性能的影响[J]. 复合材料学报, 2008, 25(6):166-174. ZHANG Yunsheng, SUN Wei, LI Zongjin. Effect of PVA short fiber and fly ash on rheological and flexural behaviors of geopolymer composites[J]. Acta Materiae Compositae Sinica, 2008, 25(6):166-174(in Chinese). |