|
- 2018
超声背散射信号递归定量分析无损表征CFRP孔隙分布仿真
|
Abstract:
针对碳纤维增强树脂基复合材料(Carbon fibre reinforced plastics,CFRP)孔隙分布对其力学性能有不可忽略影响的问题,提出对超声背散射信号进行递归定量分析(Recurrence quantification analysis,RQA)的方法来表征CFRP孔隙尺寸和位置分布。建立孔隙直径D范围为26~70 μm的3组含球形孔隙且孔隙位置分布不同的CFRP模型,3组模型的孔隙间距d分别为0.21 mm、0.14 mm和0.09 mm,对模型进行仿真计算,采用RQA方法分析超声背散射信号。研究发现,相同孔隙位置分布时,递归度PRR(Recurrence rate)随D的增加而减小;相同孔隙尺寸分布时,PRR随着孔隙间距d减小而增大,d=0.09 mm时模型的PRR始终明显高于其余两组,D<50 μm时,d=0.14 mm与d=0.21 mm模型PRR之间差别明显,D ≥ 50 μm时差别较小。结果表明,不同孔隙分布情况下PRR均存在差异,PRR可用于CFRP孔隙分布表征。 The void distribution of carbon fibre reinforced plastics (CFRP) has an important effect on its mechanical properties. Focusing on this problem, recurrence quantification analysis (RQA) of ultrasonic back-scatter signals was proposed to characterize void size and position distribution. Three groups of CFRP models with spherical voids were established, in which each model had different void position distribution. The void diameters D ranged from 26 μm to 70 μm, and the distance d of voids was 0.21 mm, 0.14 mm and 0.09 mm, respectively. Based on these models, the back-scatter signals were analyzed by RQA method. The simulated study shows that, recurrence rate PRR decreases with D increasing when the void position distribution is the same. If the void size distribution is the same, PRR increases with d decreasing. The PRR of models with d=0.09 mm are always higher than the other two groups. There is significant difference in PRR between d=0.14 mm and d=0.21 mm models when D<50 μm. But the difference is small when D ≥ 50 μm. The results demonstrate that there is difference in PRR on different void distributions, PRR can be used to characterize different void distributions in CFRP. 国家重点基础研究发展计划(2014CB046505);国家自然科学基金(51275075)
[1] | JUDD N C W, WRIGHT W W. Voids and their effects on the mechanical properties of composites-An appraisal[J]. Sample Journal, 1978, 14(1):10-14. |
[2] | LIN L, CHEN J, ZHANG X, LI X. A novel 2-D random void model and its application in ultrasonically determined void content for composite materials[J]. NDT & E International, 2011, 44(3):254-260. |
[3] | 张冬梅, 叶金蕊, 刘奎, 等. 孔隙微观特征影响CFRP力学性能的细观综述[J]. 复合材料学报, 2013, 30(s1):118-123. ZHANG Dongmei, YE Jinrui, LIU Kui, et al. Effects of void micro-characteristics on the mechanical behavior of CFRP by micromechanical method[J]. Acta Materiae Compositae Sinica, 2013, 30(s1):118-123(in Chinese). |
[4] | HAMIDI Y K, AKTAS L, ALTAN M C. Three-dimensional features of void morphology in resin transfer molded composites[J]. Composites Science and Technology, 2005, 65(7-8):1306-1320. |
[5] | MILLAN M, ALISON J. Material strength knock-down resulting from multiple randomly positioned voids[J]. Journal of Reinforced Plastics and Composites, 2011, 31(1):13-28. |
[6] | ZHUANG L. Effects of voids on delamination growth in composite laminates under compression[D]. Texas:Texas A&M University, 2012. |
[7] | CHAMBERS A, EARL J, SQUIRES C, et al. The effect of voids on the flexural fatigue performance of unidirectional carbon fibre composites developed for wind turbine applications[J]. International Journal of Fatigue, 2006, 28(10):1389-1398. |
[8] | LIN L, ZHANG X, CHEN J, et al. A novel random void model and its application in predicting void content of compo-sites based on ultrasonic attenuation coefficient[J]. Applied Physics A, 2011, 103(4):1153-1157. |
[9] | 宋永锋, 李雄兵, 吴海平, 等. In718晶粒尺寸对超声背散射信号的影响及其无损评价方法[J]. 金属学报, 2016, 52(3):378-384. SONG Yongfeng, LI Xiongbing, WU Haiping, et al. Effects of In718 grain size on ultrasonic backscatting signals and its nondestructive evaluation method[J]. Acta Metallurgica Sinica, 2016, 52(3):378-384(in Chinese). |
[10] | TITTMANN B R, AHLBERG L. Review of progress in quantitative NDE[M]. New York:Plenum Press, 1983:68-75. |
[11] | 赵鹏, 周云龙, 孙斌. 递归定量分析在离心泵故障诊断中的运用[J]. 振动. 测试与诊断, 2010, 30(6):612-616. ZHAO Peng, ZHOU Yunlong, SUN Bin. Application of recurrence quantification analysis in fault diagnosis of centrifugal pump[J]. Journal of Vibration, Measurement & Diagnosis, 2010, 30(6):612-616(in Chinese). |
[12] | ECKMANN J P, KAMPHORST S O, RUELLE D. Recurrence plots of dynamical systems[J]. Europhysics Letters, 1987, 4(9):973-977. |
[13] | TAKENS F. Detecting strange attractors in turbulence[J]. Lecture Notes in Mathematics, 1981, 898(1):366-381. |
[14] | SUN L, JI A, HU J, et al. A method to measure the distance among scatters and the scatters' diameter in artificial composite materials[J]. Ultrasonics, 2016, 67:70-75. |
[15] | SMITH R L. The effect of grain size distribution on the frequency dependence of the ultrasonic attenuation in polycrystalline materials[J]. Ultrasonics, 1982, 20(5):211-214. |
[16] | WEBBER C J, ZBILUT J P. Dynamical assessment of physiological systems and states using recurrence plot strategies[J]. Journal of Applied Physiology, 1994, 76(2):965-973. |
[17] | REYNOLDS W N, SMITH R L. Ultrasonic wave attenuation spectra in steels[J]. Journal of Phy-sics D:Applied Physics, 1984, 17(1):109-116. |
[18] | 李建国. 碳纤维复合材料孔隙率及其检测方法[J]. 纤维复合材料, 2012, 29(4):20-23. LI Jianguo. Carbon fiber composite voids and testing methods[J]. Fiber Composites, 2012, 29(4):20-23(in Chinese). |
[19] | 李钊. 碳纤维复合材料孔隙率超声检测与评价技术研究[D]. 杭州:浙江大学, 2014. LI Zhao. Research on ultrasonic detection and evaluation technique for porosity of carbon fiber composites[D]. Hangzhou:Zhejiang University, 2014(in Chinese). |
[20] | 牟云飞, 张翔, 林莉, 等. 基于随机孔隙模型的CFRP孔隙率超声检测研究[J]. 机械工程学报, 2010, 46(4):22-26. MU Yunfei, ZAHNG Xiang, LIN Li, et al. Investigations on CFRP porosity by using ultrasonic testing based on random pores model[J]. Journal of Mechanical Engineering, 2010, 46(4):22-26(in Chinese). |
[21] | 丁珊珊, 罗忠兵, 陈军, 等. 基于数值计算方法的CFRP层板二维细观形貌多孔隙超声散射衰减[J]. 复合材料学报, 2014, 31(3):692-698. DING Shanshan, LUO Zhongbing, CHEN Jun, et al. Ultrasonic scattering attenuation of multi-void on 2D micro-morphology in CFRP laminates based on numerical calculation method[J]. Acta Materiae Compositae Sinica, 2014, 31(3):692-698(in Chinese). |
[22] | 丁珊珊, 金士杰, 何晓晨, 等. 基于仿真方法的CFRP复合材料孔隙率与超声衰减系数的关系[J]. 复合材料学报, 2018, 35(1):89-94. DING Shanshan, JIN Shijie, HE Xiaochen, et al. The relationship between porosity and ultrasonic attenuation coefficient of CFRP based on simulation method[J]. Acta Materiae Compositae Sinica, 2018, 35(1):89-94(in Chinese). |
[23] | 钟季康, 宋志怀, 郝为强. RQA在肌电分析中的应用[J]. 生物物理学报, 2002, 18(2):241-245. ZHONG Jikang, SONG Zhihuai, HAO Weiqiang. Application of RQA in EMG analysis[J]. Acta Biophysica Snica, 2002, 18(2):241-245(in Chinese). |
[24] | RAJESH V G, RAJESH M V. Bearing fault feature extraction by recurrence quantification analysis[J]. Proceedings of World Academy of Science Engineering & Technology, 2008, 45(9):449-453. |
[25] | BRANDT C, MAAB P. A state space approach for the non-destructive evaluation of CFRP with ultrasonic testing[C]//7th Symposium on NDT in Aerospace, Bremen:Online-Proceedings on ndt. Net, 2015. |
[26] | 滕云浩. 碳纤维复合材料构件微缺陷超声评价系统研究[D]. 杭州:浙江大学, 2017. TENG Yunhao. A research on ultrasonic evaluation system of material defects in carbon fiber reinforced polymer[D]. Hangzhou:Zhejiang University, 2017(in Chinese). |