全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2018 

碳/酚醛防热复合材料烧蚀行为的数值模拟
Numerical simulation of ablation behavior of carbon/phenolic thermal protection system composite

DOI: 10.13801/j.cnki.fhclxb.20171219.002

Keywords: 碳/酚醛复合材料,热防护,烧蚀行为,数值模拟,温度分布
carbon/phenolic composite
,thermal protection,ablation behavior,numerical simulation,temperature distribution

Full-Text   Cite this paper   Add to My Lib

Abstract:

碳/酚醛复合材料被广泛地应用于钝头体表面,是飞行器优秀的热防护材料。为了准确地预测其烧蚀性能,本文从复合材料的组成物纤维和基体的角度出发,基于能量、质量守恒和热分解方程,考虑了烧蚀过程中材料热属性的非线性变化和烧蚀面的退缩,分别计算了纤维和基体的烧蚀性能,预测了烧蚀过程中防热复合材料的温度分布、密度变化、质量损失规律及热属性和线烧蚀率等。结果表明:碳/酚醛复合材料的烧蚀是各种因素相互作用、相互影响的高度非线性过程;烧蚀过程中材料结构具有不均匀的温度分布,烧蚀面区域材料密度衰减最大并且材料的质量损失和损失率几乎呈线性增加;纤维和基体的烧蚀行为存在明显差异,分别预测两者的烧蚀性能,可以为热防护材料的设计提供更加准确的参考和依据。 Carbon/phenolic composite had been widely used as thermal protection system (TPS). Thus, in order to predict the ablation behavior of the carbon/phenolic composite, a mathematical model was proposed in this paper, which was based on the energy-and mass-conservation principles as well as on the thermal decomposition equation. The ablation process was simulated from the perspective of the fiber and matrix components. The thermal properties during ablation were calculated, and a moving boundary was implemented to consider the recession of the ablation surface. The temperature distribution, density, thermal properties, linear ablation rate and mass loss of the carbon/phenolic composite were predicted. The results show that the ablation of the carbon/phenolic composite is a highly nonlinear process of interaction of various factors. During ablation, the composite material has an uneven temperature distribution and the attenuation of the density on the ablative surface is the largest. In addition, the mass loss and mass loss rate almost increase linearly. The ablation behavior of the fiber and matrix is obviously different. Therefore, in order to provide more accurate reference and basis for the design of thermal protection materials, it is necessary to predict their ablation behavior respectively. 国家自然科学基金(50271016)

References

[1]  SRIKANTH I, PADMAVATHI N, KUMAR S, et al. Mechanical, thermal and ablative properties of zirconia, CNT modified carbon/phenolic composites[J]. Composites Science & Technology, 2013, 80(80):1-7.
[2]  朱燕伟, 孟松鹤, 易法军, 等. 碳/酚醛复合材料烧蚀行为预报方法[J]. 复合材料学报, 2016, 33(5):984-990. ZHU Yanwei, MENG Songhe, YI Fajun, et al. Forecasting method for ablation behaviors of carbon/phenolic composites[J]. Acta Materiae Compositae Sinica, 2016, 33(5):984-990(in Chinese).
[3]  LACHAUD J, VIGNOLES G L. A brownian motion technique to simulate gasification and its application to C/C composite ablation[J]. Computational Materials Science, 2009, 44(4):1034-1041.
[4]  LACHAUD J, ASPA Y, VIGNOLES G L. Analytical modeling of the steady state ablation of a 3D C/C composite[J]. International Journal of Heat & Mass Transfer, 2008, 51(9):2614-2627.
[5]  ViGNOLES G L, LACHAUD J, ASPA Y, et al. Ablation of carbon-based materials:Multiscale roughness modelling[J]. Composites Science & Technology, 2009, 69(9):1470-1477.
[6]  MARTIN A. Volume averaged modeling of the oxidation of porous carbon fiber material[C]//44th AIAA Thermophysics Conference, 2013, 7902(1):225-229.
[7]  PANERAI F, MANSOUR N N, LACHAUD J, et al. Experimental and numerical study of carbon fiber oxidation[C]//AIAA Aerospace Sciences Meeting, 2014, 66(6):299-310.
[8]  SCHROOYEN P, HILLEWAERT K, MAGIN T E, et al. Fully implicit discontinuous galerkin solver to study surface and volume ablation competition in atmospheric entry flows[J]. International Journal of Heat & Mass Transfer, 2016, 103:108-124.
[9]  FERGUSON J C, PANERAI F, LACHAUD J, et al. Modeling the oxidation of low-density carbon fiber material based onmicro-tomography[J]. Carbon, 2016, 96(2):57-65.
[10]  LI W J, HUANG H M, TIAN Y, et al. Nonlinear analysis on thermal behavior of charring materials with surface ablation[J]. International Journal of Heat & Mass Transfer, 2015, 84:245-252.
[11]  LI W J, HUANG H M, TIAN Y, et al. A nonlinear pyrolysis layer model for analyzing thermal behaviorof charring ablator[J]. International Journal of Thermal Sciences, 2015, 98:104-112.
[12]  王臣, 梁军, 吴世平, 等. 高温烧蚀条件下C/C材料热力耦合场模拟[J]. 复合材料学报, 2006, 23(5):143-148. WANG Chen, LIANG Jun, WU Shiping, et al. Numerical simulation of C/C composites coupled thermo-mechanicalfield under the condition of high temperatures and ablation[J]. Acta Materiae Compositae Sinica, 2006, 23(5):143-148(in Chinese).
[13]  DING Jie, HUANG Zhixiong, QIN Yan, et al. Improved ablation resistance of carbon-phenolic composites by introducing zirconium silicide particles[J]. Composites Part B:Engineering, 2015, 82:100-107.
[14]  SCOGGINS J B, MANSOUR N N, HASSAN H A. Development of reduced kinetic mechanism for pica pyrolysis products[C]//42nd AIAA Thermophysics Conference. Honolulu:AIAA, 2013.
[15]  SCOGGINS J B, HASSAN H A. Pyrolysis mechanism of PICA[C]//10th AIAA/ASME Joint Thermophysics and Heat Transfer Conference. Chicago:AIAA, 2013.
[16]  YIN T T, ZHANG Z W, LI X F, et al. Modeling ablative behavior and thermal response of carbon/carbon composites[J]. Computational Materials Science, 2014, 95:35-40.
[17]  WANG Chen. Numerical analyses of ablative behavior of C/C composite materials[J]. International Journal of Heat & Mass Transfer, 2016, 95:720-726.
[18]  MENG S H, ZHOU Y J, XIE W H, et al. Multiphysics coupled fluid/thermal/ablation simulation of carbon/carbon compo-sites[J]. Journal of Spacecraft & Rockets, 2016, 53(5):1-6.
[19]  SCOGGINS J B, RABINOVITCH J, BARROS-FERNANDEZ B, et al. Thermodynamic properties of carbon-phenolic gas mixtures[J]. Aerospace Science & Technology, 2017, 66:177-192.
[20]  LACHAUD J, EEKELEN T V, SCOGGINS J B, et al. Detailed chemical equilibrium model for porous ablative materials[J]. International Journal of Heat & Mass Transfer, 2015, 90:1034-1045.
[21]  TORRE L, KENNY J M, MAFFEZZOLI A M. Degradation behaviour of a composite material for thermal protection systems. Part Ⅱ:Process simulation[J]. Journal of Materials Science, 1998, 33:3145-3149.
[22]  RICCIO A, DAMIANO M, ZARRELLI M, et al. Simulating the response of composite plates to fire[J]. Applied Composite Materials, 2014, 21(3):511-524.
[23]  SANOJ P, KANDASUBRAMANIAN B. Hybrid carbon-carbon ablative composites for thermal protection in aerospace[J]. Journal of Composites, 2014(1):1-15.
[24]  RICCIO A, DAMIANO M, ZARRELLI M, et al. Three-dimensional modeling of composites fire behavior[J]. Journal of Reinforced Plastics & Composites, 2014, 33(7):619-629.
[25]  CHEN Y K, MILOS F S. Navier-stokes solutions with finite rate ablation for planetary mission earth reentries[J]. Journal of Spacecraft & Rockets, 2005, 42(6):961-970.
[26]  TURCHI A, BIANCHI D, NASUTI F, et al. A numerical approach for the study of the gas-surface interaction in carbon-phenolic solid rocket nozzles[J]. Aerospace Science & Technology, 2013, 27(1):25-31.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133