|
- 2018
复合纤维配比对精铸硅溶胶型壳性能的影响
|
Abstract:
为了分析复合纤维配比对熔模精铸中硅溶胶型壳的强度和透气性的影响,采用尼龙和陶瓷复合纤维制备硅溶胶型壳试样,在其中加入的尼龙纤维和陶瓷纤维的体积配比为100∶0、82.7∶17.3、61.5∶38.5、34.7∶65.3和0∶100,对获得的复合纤维增强型壳试样的生胚抗弯强度、焙烧后抗弯强度和透气性的变化规律进行研究。结果表明,当尼龙纤维在复合纤维中体积分数从0%~100%变化时,型壳生胚抗弯强度逐渐增大,焙烧后抗弯强度总体变化不明显,透气率先增大后减小。当尼龙纤维的体积分数为82.7%时,透气率达到最大值5.21。根据试样断口形貌及纤维增强行为分析,型壳生胚抗弯强度主要受纤维体积含量的影响;型壳焙烧后抗弯强度和透气性受陶瓷纤维体积含量、涂挂厚度和尼龙纤维烧失后留下孔洞数量的综合影响。 In order to analyse the influence of composite fiber ratio on the strength and breathability of reinforced silica sol shell for investment casting, the bending strength of the embryo and after baking and breathability of composite fiber reinforced shell samples were studied. Ceramic and nylon composite fibers were used to enhance silica sol shell samples. In the slurry, the volume ratio of the nylon fiber and ceramic fiber respectively were 100:0, 82.7:17.3, 61.5:38.5, 34.7:65.3 and 0:100. The results indicate that when the proportion of nylon fibers changes from 0% to 100% in the complex fibers, the bending strength of the embryo of the shell increases gradually, the overall change of the fired bending strength is not obvious, and the breathability rate has the trend of increasing first and then decreasing. When the volume content of nylon fibers is 82.7%, the breathability rate reachs maximum, which is 5.21. According to the analysis of the fracture morphology and fiber reinforced behavior, the bending strength of the embryo of mold shell is mainly affected by the volume content of fiber and the flexural strength and permeability of the shell after baking are influenced by the volume content of ceramic fiber, the thickness of coating and the number of holes that the nylon fiber left after being burning. 航空科学基金(2015ZE56015);省教育厅项目(GJJ160687)
[1] | 吕凯, 刘向东, 王浩, 等. 短切硅酸铝纤维增强硅溶胶型壳的抗弯强度及高温自重变形[J]. 材料工程, 2015, 43(7):56-61. LV Kai, LIU Xiangdong, WANG Hao, et al. Flexural strength and high temperature self weight deformation of chopped silica fiber reinforced silica sol shell[J]. Materials Engineering, 2015, 43(7):56-61(in Chinese). |
[2] | 吕凯, 刘向东, 李艳芬, 等. 纤维增强熔模铸造复合型壳的性能及断口形貌[J]. 北京航空航天大学报, 2014, 40(10):1361-1365. LV Kai, LIU Xiangdong, LI Yanfen, et al. Performance and fracture morphology of fiber reinforced investment casting composite shell[J]. Journal of Beijing University Aeronautics and Astronautics, 2014, 40(10):1361-1365(in Chinese). |
[3] | YUAN C, JONES S. Investigation of fiber modified ceramic moulds for investment casting[J]. Journal of the European Ceramic Society, 2003, 23(3):399-407. |
[4] | 芦刚, 纪超众, 严青松, 等. 陶瓷纤维长度对复合精铸型壳抗弯强度与透气性的影响及增强行为[J]. 复合材料学报, 2017, 34(4):637-644. LU Gang, JI Chaozhong, YAN Qingsong, et al. Influence of ceramic fiber length on flexural strength and permeability of composite investment casting shell[J]. Journal of Composite Materials, 2017, 34(4):637-644(in Chinese). |
[5] | 毛蒲, 芦刚, 严青松, 等. 复合纤维含量对精铸硅溶胶型壳强度及透气性的影响[J]. 中国有色金属学报, 2015, 24(1):174-178. MAO Pu, LU Gang, YAN Qingsong, et al. Effects of composite fiber content on strength and breathability of silica sol shell for investment casting[J]. The Chinese Journal of Nonferrous Metals, 2015, 24(1):174-178(in Chinese). |
[6] | 肖树龙, 陈玉勇, 朱洪艳, 等. 大型复杂薄壁钛合金铸件熔模精密铸造研究现状及发展[J]. 稀有金属材料与工程, 2006, 35(5):678-681. XIAO Shulong, CHEN Yuyong, ZHU Hongyan, et al. Research status and development of investment casting of large and complex thin-walled titanium alloy[J]. Rare Metal Materials and Engineering, 2006, 35(5):678-681(in Chinese). |
[7] | 吕志刚. 我国熔模精密铸造的历史回顾与发展展望[J]. 铸造, 2012, 61(4):347-356. LV Zhigang. History and development trend of investment casting industry in China[J]. Foundry, 2012, 61(4):347-356(in Chinese). |
[8] | 何树先, 王俊. 大型复杂薄壁高温合金铸件熔模精铸技术的研究进展[J]. 热加工工艺, 2013(21):5-8, 12. HE Shuxian, WANG Jun. Research progress of investment casting technology for large and complex thin-walled high temperature alloy castings[J]. Hot Processing Technology, 2013(21):5-8, 12(in Chinese). |
[9] | CHHABRA M, SINGH R. Rapid casting solutions:A review[J]. Rapid Prototyping Journal, 2010, 17(5):328-350. |
[10] | VAEZI M, SAFAEIAN D. Gas turbine blade manufacturing by use of epoxy resin tooling and silicone rubber molding techniques[J]. Rapid Prototyping Journal, 2010, 17(2):107-115. |
[11] | 刘夏, 余建波, 杨治刚, 等. 快速干燥法制备硅溶胶型壳过程的研究[J]. 铸造, 2014, 63(10):1043-1046. LIU Xia, YU Jianbo, YANG Zhigang, et al. Research on the process of producing the silicasol shell by quick drying methods[J]. Foundry, 2014, 63(10):1043-1046(in Chinese). |
[12] | NEUSSL E, SAHM P R. Selectively fiber-reinforced components produced by the modified investment casting process[J]. Composites:Part A, 2001, 32:1077-1083. |
[13] | 杨世洲, 傅骏. 一种高性能熔模铸造复合型壳的制备工艺[J]. 铸造技术, 2010, 31(5):628-630. ZHOU Shiyang, FU Jun. Preparation process of high performance investment casting composite shell[J]. Foundry Technology, 2010, 31(5):628-630(in Chinese). |
[14] | LIU Q B, LEU M C, RICHARDS V L. Fracture toughness of ceramic moulds for investment casting with ice patterns[J]. International Journal of Cast Metals Research, 2007, 20(1):14-24. |
[15] | MAITY P C, MAITY J. Development of high strength ceramic shell for investment casting[J]. Indian Foundry Journal, 2011, 47(7):23-26. |
[16] | 孔凡涛, 赵而团, 陈玉勇, 等. 一种钛合金熔模铸造用纤维增强薄壁型壳的制备方法. 中国:CN102527937A[P]. 2012-07-04. KONG Fantao, ZHAO Ertuan, CHEN Yuyong, et al. A titanium alloy casting with fiber reinforced thin-wall shell preparation method. China:CN102527937A[P]. 2012-07-04(in Chinese). |
[17] | 赵松. Ti-47Al-2Cr-2 Nb合金熔模精密铸造工艺研究[D]. 哈尔滨:哈尔滨工业大学, 2008. ZHAO Song. Study on precision casting technology of ti-47al-2cr-2nb alloy investment casting[D]. Harbin:Harbin Institute of Technology, 2008(in Chinese). |
[18] | 陈合芝. 熔模铸造硅溶胶型壳的研究进展[J]. 金属加工(热加工), 2016(11):67-69. CHEN hezhi, Research progress of silica sol shell for investment casting[J]. Metal Working (Hot Working), 2016(11):67-69(in Chinese). |
[19] | 吕凯, 刘向东, 王浩, 等. 玻璃纤维增强硅溶胶型壳的强度及高温自重变形[J]. 特种铸造及有色合金, 2014, 34(9):958-962. LV Kai, LIU Xiangdong, WANG Hao, et al. Strength and high temperature deformation of glass fiber reinforced silica sol shell[J]. Special Casting and Nonferrous Alloys, 2014, 34(9):958-962(in Chinese). |
[20] | HARUN Z, KAMARUDIN N H, TAIB H M. Effect of rice husk on fired ceramic shell strength[J]. Advanced Materials Research, 2013, 795(1):732-737. |