|
- 2018
多角度交替缠绕复合圆筒的剩余应力算法及水压试验
|
Abstract:
针对含薄壁钢内衬碳纤维增强聚合物基复合材料(CFRP)多角度交替缠绕复合圆筒的剩余应力计算问题,基于正交各向异性材料的厚壁圆筒理论和弹性叠加理论,提出了考虑卸去芯模影响的多角度交替缠绕下CFRP各层和钢内衬剩余应力的逐层叠加算法,研究了恒缠绕张力下,芯模厚度和螺旋层缠绕角对CFRP各层和钢内衬剩余应力的影响。计算表明:芯模厚度越大则CFRP层剩余应力越低,但芯模厚度过大将减弱缠绕张力对钢内衬的强化效应;螺旋层缠绕角约65°时,环向层剩余应力出现极小值,螺旋层剩余应力和内衬剩余应力均出现极大值。针对缠绕张力对钢内衬的强化效应,通过水压试验加载过程中钢内衬声发射特征与复合圆筒外壁应变测试,测得的钢内衬屈服载荷与理论预测值一致,基本证实了算法的有效性。为提高CFRP层缠绕质量,基于等剩余应力假设,提出了多角度交替缠绕张力制度优化设计思路,适用于内压管的张力制度优化。 In order to calculate the residual stress of CFRP layers and metal liner for composite cylinders consisting of alternate multi-angle CFRP winding layers and thin-walled metal liner, a superposition algorithm layer by layer for CFRP layers and metal liner residual stress was proposed, reflecting on the thick walled cylinder theory and the elastic superposition theory of orthotropic material, and the effect of removing mandrel was under consideration as well. The influence of the spiral layers winding angle and the thickness of mandrel on the residual stress of CFRP layers and steel liner was analyzed with constant winding tension. The greater the thickness of mandrel, the lower the residual stress of CFRP layers is, but too thick mandrel weakens the enhancement effect of steel liner profiting from winding tension. When the spiral winding angle is in 65°, the residual stress of hoop layers is minimum, and the residual stress of spiral layers and steel liner is maximum. For the enhancement effect for steel liner, the yield loading pressure of steel liner was measured by the acoustic emission characteristics of the steel liner and the strain measurement of composite cylinder outer edge in the loading process based on water-pressure test. The test results were basically consistent with the theoretical prediction values and the validity of the algorithm proposed above was verified. A optimization design ideal of fibra intertwist tension system for composite cylinder with alternate multi-angle winding layers, which withstands an internal pressure load, was proposed to improve the winding quality, based on the hypothesis of equal residual stress in hoop and spiral layers, respectively. 军队重点攻关项目(ZS2015070132A12002)
[1] | 吕彦, 胡俊, 赵鸿雁, 等. 复合材料炮管技术研究概况[J]. 兵器材料科学与工程, 2012, 35(3):91-96. LV Y, HU J, ZHAO H Y, et al. Research survey of composite material gun barrel[J]. Ordnance Material Science and Engineering, 2012, 35(3):91-96(in Chinese). |
[2] | 张相炎, 郑建国, 袁人枢, 等. 火炮设计理论[M]. 北京:北京理工大学出版社, 2014. ZHANG X Y, ZHEN J G, YUAN R S, et al. Gundesign theory[M]. Beijing:Beijing Institute of Technology Press, 2014(in Chinese). |
[3] | ANDREW G L, EDWARD J H. 120 mm prestressed carbon fiber/thermoplastic overwrapped gun tubes[J]. Journal of Pressure Vessel Technology, 2012, 134(4):0410081-0410089. |
[4] | PARKER A P, TROIANO E, UNDERWOOD J H. Stresses within compound tubes comprising a steel liner and an external carbon-fiber wrapped laminate[J]. Pressure Vessel Technology, 2015, 127(1):26-30. |
[5] | IMAMURA T, KUROIWA T, MITSUI N, et al. Development of hoop filament winding system with tension control[J]. Transactions of the Japan Society of Mechanical Engineers Part C, 2003, 69(4):906-913. |
[6] | 任明法, 郑长良, 陈浩然. 具有内衬的缠绕容器缠绕层等张力设计的迭代搜索[J]. 复合材料学报, 2004, 21(5):153-158. REN M F, ZHENG C L, CHEN H R. Iterative search for the isotension design of the band wound vessels with liner[J]. Acta Materiae Compositae Sinica, 2004, 21(5):153-158(in Chinese). |
[7] | ANTHONY P P, EDWARD T J, UNDERWOOD H. Stresses within compound tubes comprising a steel liner and an external carbon-fiber wrapped laminate[J]. Journal of Pressure Vessel Technology, 2005, 127(1):26-29. |
[8] | ANDREW L, EDWARD H, ANDREW A, et al. Carbon fiber/thermoplastic overwrapped gun tube[J]. Materials & Manufacturing Processes, 2006, 21(6):573-578. |
[9] | DE R, WILLIAM S, AUDINO M J. Advanced gun barrel materials and manufacturing technology symposium overview and perspective[J]. Materials & Manufacturing Processes, 2011, 21(6):571-572. |
[10] | QIAN L F, BATRA R C, CHEN L M. Static and dynamic deformations of thick functionally graded elastic plates by using higher-order shear and normal deformable plate theory and meshless local Petrov-Galerkin method[J]. Composites Part B:Engineering, 2004, 35(6):685-697. |
[11] | QIAN L F, BATRA R C, CHEN L M. Analysis of cylindrical bending thermoelastic deformation of functionally graded plates by a meshless local Petrov-Galerkin method[J]. Computational Mechanics, 2004, 33(4):263-273. |
[12] | BATRA R C, QIAN L F, CHEN L M. Natural frequency of thick square plates of orthotropic, trigonal, monoclinic, hexagonal and triclinic materials[J]. Journal of Sound and Vibration, 2004, 270(4-5):1074-1086. |
[13] | DE H F R, COZIJNSEN M, YUEN W Y D. An inverse solution for winding stresses in wound coils of linear orthotropic material with large deformations[J]. Proceedings of the Institution of Mechanical Engineers, Part C:Journal of Mechanical Engineering Science, 2007, 221(6):639-652. |
[14] | 刘成旭, 型静忠, 陈利, 等. 柔性厚壁筒环向缠绕张力分析与设计[J]. 固体火箭技术, 2013, 36(2):261-265. LIU C X, XING J Z, CHEN L, et al. Analysis of residual winding tension and design of winding tension for hoop winding on flexible cylinder[J]. Journal of Solid Rocket Technology, 2013, 36(2):261-265(in Chinese). |
[15] | 康超, 史耀耀, 何晓东, 等. 具有厚壁内衬圆筒的缠绕张力算法[J]. 工程力学, 2016, 33(2):200-208. KANG C, SHI Y Y, HE X D, et al. Algorithm of winding tension for cylinder with thick-walled liner[J]. Engineering Mechanics, 2016, 33(2):200-208(in Chinese). |
[16] | 郑长良, 任明法, 陈浩然. 具有内衬缠绕式压力容器缠绕过程的有限元模拟[J]. 机械强度, 2006, 28(6):913-918. ZHENG C L, REN M F, CHEN H R. Finite element simulation of the winding process of band wound vessels with liner[J]. Journal of Mechanical Strength, 2006, 28(6):913-918(in Chinese). |
[17] | 梁清波, 邢静忠, 杨涛. 柱形缠绕件的环向缠绕张力设计的理论研究及其数值模拟[J]. 固体火箭技术, 2013, 36(6):799-835. LIANG Q B, XING J Z, YANG T. Theoretical research and numerical simulation of winding tension design of hoop winding on cylindrical mandrel[J]. Journal of Solid Rocket Technology, 2013, 36(6):799-835(in Chinese). |
[18] | 刘新东, 刘伟. 复合材料力学基础[M]. 西安:西北工业大学出版社, 2010. LIU X D, LIU W. Composite materials mechanics[M]. Xi'an:Northwestern Polytechnics University Press, 2010(in Chinese). |
[19] | 邢静忠, 陈利. 内外压作用下纤维缠绕厚壁柱形容器的强度[J]. 复合材料学报, 2011, 28(1):124-131. XING J Z, CHEN L. Strength of filament wound thick-walled cylindrical vessel under internal and external pressure[J]. Acta Materiae Compositae Sinica, 2011, 28(1):124-131(in Chinese). |
[20] | 沈功田. 声发射检测技术及应用[M]. 北京:科学出版社, 2015. SHEN G T. Acoustic emission technology and application[M]. Beijing:Science Press, 2015(in Chinese). |
[21] | 丁宝庚, 杨福江. 缠绕张力公式的研究[J]. 玻璃钢/复合材料, 2000, 6(11):73-77. DING B G, YANG F J. Study of winding tension formals[J]. Fiber Reinforced Plastics/Composite, 2000, 6(11):73-77(in Chinese). |
[22] | 吴德会, 张忠远. 厚壁复合材料管纤维缠绕张力的神经网络设计方法[J]. 复合材料学报, 2012, 29(4):195-203. WU D H, ZHANG Z Y. Approach to design tension of fliament winding for thick composite pipe using a neural network[J]. Acta Materiae Compositae Sinica, 2012, 29(4):195-203(in Chinese). |
[23] | 边文凤, 孙芳, 王彪. 提高金属内衬容器承载能力的预外压法[J]. 固体火箭技术, 2005, 28(1):60-64. BIAN W F, SUN F, WANG B. External pre-pressure method for improving the load-bearing of vessels with metallic liner[J]. Journal of Solid Rocket Technology, 2005, 28(1):60-64(in Chinese). |
[24] | 全国压力容器标准化技术委员会. 承压设备无损检测:JB/T 4730-2005[S]. 北京:中国标准出版社, 2005. China Standandization Committee on Boilers and Pressure Vessels. Nondestructive testing of pressure equipments:JB/T 4730-2005[S]. Beijing:Standards Press of China, 2005(in Chinese). |
[25] | WU Z, HUANG N E. Ensemble empirical mode decomposition:A noise-assisted data analysis method[J]. Advances in Adaptive Data Analysis, 2009, 1(1):1-41. |
[26] | WANG C S, SHA C Y, SU M, et al. An algorithm to remove noise from locomotive bearing vibration signal based on self-adaptive EEMD filter[J]. Journal of Central South University, 2017, 24(2):478-488. |