全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2018 

基于土体isotache模型的硬化水泥净浆微观徐变预测
Prediction of micro creep behavior of hardened cement paste based on the isotache model of clays

DOI: 10.13801/j.cnki.fhclxb.20170801.002

Keywords: 硬化水泥净浆,微观徐变,连续刚度测试,isotache模型,应变率
hardened cement paste
,micro creep,continuous stiffness measurement,isotache model,strain rate

Full-Text   Cite this paper   Add to My Lib

Abstract:

水泥基材料是一种应变率敏感性材料,充分掌握水泥基材料的应变率效应对其力学性能和变形的影响可保障混凝土结构的安全设计。采用连续刚度测试(CSM)研究不同应变率下硬化水泥净浆微观徐变特征,试样的水灰比为0.3、0.4和0.5,CSM的最大压入深度为30 μm,应变率分别为0.01 s-1、0.05 s-1、0.1 s-1和0.5 s-1,并讨论土体的isotache模型表征硬化水泥净浆微观徐变行为的适用性。结果表明,在0.01~0.5 s-1应变率范围内,微观尺度上的硬化水泥净浆存在唯一的hvp-P-ε关系,与土体isotache模型的εvp-σ-ε关系类似,该关系可由归一化后的hvp-P/(PN/PN0.05)曲线和PN/PN0.05-ε曲线来表征。采用hvp-P/(PN/PN0.05)曲线和PN/PN0.05-ε曲线可预测不同应变率下硬化水泥净浆加载阶段的hvp-P曲线,预测结果与实测结果基本吻合,表明可以采用土体的isotache模型来预测硬化水泥净浆微观尺度上的徐变行为。 Cement-based material is a strain-rate-sensitivity material, understanding of the strain rate effect on the mechanical properties and deformation of cement-based materials fully can ensure safe design of concrete structures with enhanced performance. The micro creep of hardened cement pastes under different strain rates were investigated by performing continuous stiffness measurement. The (water to cement) w/c ratios of hardened cement pastes were 0.3, 0.4, and 0.5. The maximum indentation depth during the CSM was set as 30 μm and the applied strain rates were 0.01 s-1, 0.05 s-1, 0.1 s-1, and 0.5 s-1. The results show that a unique hvp-P-ε relationship is found for hardened cement paste under the strain rates ranging between 0.01s-1 and 0.5 s-1 at microscale. This is analogous to the unique εvp-σ-ε relationship for clays. The hvp-P-ε relationship can be simply described by two sets of curves:the PN/PN0.05-ε curve and the normalized hvp-P/(PN/PN0.05) curve. These two curves can be used to predict the hvp-P curves of cement pastes under any constant strain rate during the loading stage. This finding preliminary confirms the applicability of the isotache approach to characterize the time-dependent deformation of cement pastes at microscale. 国家自然科学基金(51578316;51778331)

References

[1]  CONSTANTINIDES G, ULM F J. The effect of two types of CSH on the elasticity of cement-based materials:Results from nanoindentation and micromechanical modeling[J]. Cement and Concrete Research, 2004, 34(1):67-80.
[2]  LEROUEIL S, KABBAJ M, TAVENAS F, et al. Stress-strain-strain rate relation for the compressibility of sensitive natural clays[J]. International Journal of Rock Mechanics & Mining Sciences & Geomechanics Abstracts, 1985, 35(2):159-180.
[3]  KOLSKY H. An investigation of the mechanical properties of materials at very high rates of loading[J]. Proceedings of the Physical Society B, 1949, 62(11):676-700.
[4]  WEI Y, LIANG S, GAO X. Indentation creep of cementitious materials:Experimental investigation from nano to micro length scales[J]. Construction and Building Materials, 2017, 143(2017):222-233.
[5]  SU C, HERBERT E G, SOHN S, et al. Measurement of power-law creep parameters by instrumented indentation methods[J]. Journal of the Mechanics and Physics of Solids, 2013, 61(2):517-536.
[6]  BA?ANT Z P. Prediction of concrete creep and shrinkage:Past, present and future[J]. Nuclear Engineering and Design, 2001, 203(1):27-38.
[7]  HARSH S, SHEN Z, DARWIN D. Strain-rate sensitive behavior of cement paste and mortar in compression[J]. ACI Materials Journal, 1990, 87(5):508-516.
[8]  LI X, BHUSHAN B. A review of nanoindentation continuous stiffness measurement technique and its applications[J]. Materials Characterization, 2002, 48(1):11-36.
[9]  OLIVER W C, PHARR G M. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments[J]. Journal of Materials Research, 1992, 7(6):1564-1583.
[10]  WEI Y, GAO X, LIANG S. Nanoindentation-based study of the micro-mechanical properties, structure, and hydration degree of slag-blended cementitious materials[J]. Journal of Materials Science, 2016, 51(7):3349-3361.
[11]  VANDAMME M, ULM F J. Nanoindentation investigation of creep properties of calcium silicate hydrates[J]. Cement and Concrete Research, 2013, 52(10):38-52.
[12]  ZHANG Q, LE ROY R, VANDAMME M, et al. Long-term creep properties of cementitious materials:Comparing microindentation testing with macroscopic uniaxial compressive testing[J]. Cement and Concrete Research, 2014, 58(58):89-98.
[13]  POURBEIK P, BEAUDOIN J J, ALIZADEH R, et al. Creep of 45 year old cement paste:The role of structural water[J]. Materials and Structures, 2016, 49(3):739-750.
[14]  VANDAMME M. A few analogies between the creep of cement and other materials[C]//10th International Conference on Mechanics and Physics of Creep, Shrinkage, and Durability of Concrete and Concrete Structures, 2015:78-83.
[15]  SUKLJE L. The analysis of the consolidation process by the isotache method[C]//Proceedings of the 4th International Conference on Soil Mechanics and Foundation Engineering, London, 1957, 1:200-206.
[16]  WATABE Y, UDAKA K, MORIKAWA Y. Strain rate effect on long-term consolidation of Osaka bay clay[J]. Soils and Foundations, 2008, 48(4):495-509.
[17]  PAN H H, WENG G J. Study on strain-rate sensitivity of cementitious composites[J]. Journal of Engineering Mechanics, 2010, 136(9):1076-1082.
[18]  ACKER P, LAU M Y, COLLET F. Comportement différé du béton:Validation expérimentale de la méthode du temps équivalent[J]. Bulletin de Liaison des Laboratoires des Ponts et Chaussées, 1989(163):31-39.
[19]  HAY J, AGEE P, HERBERT E. Continuous stiffness measurement during instrumented indentation testing[J]. Experimental Techniques, 2010, 34(3):86-94.
[20]  SNEDDON I N. The relation between load and penetration in the axisymmetric boussinesq problem for a punch of arbitrary profile[J]. International Journal of Engineering Science, 1965, 3(1):47-57.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133