|
- 2018
La2O3添加对MgAl2O4-CaAl4O7-CaAl12O19复合材料烧结行为的影响
|
Abstract:
为适应材料轻量化的发展需要,在1 400~1 600℃温度下开发了MgAl2O4-CaAl4O7-CaAl12O19(MA-CA2-CA6)复合材料,并考察了La2O3添加对该复合材料烧结行为、显微结构和力学性能的影响。结果表明,La2O3添加剂优先固溶到MA-CA2-CA6复合材料组成晶相CA6中,促使CA6相发生晶格畸变,有效抑制了CA6晶粒沿基面的异常长大,其形貌由片状向等轴状趋势转变,促使MA-CA2-CA6复合材料制备过程中由于CA6晶粒异常长大而导致的多孔网状显微结构得以有效消除,因此也极大地改善了Mg2+的扩散条件,在一定程度上间接促进了MA晶粒的发育,有效促进了MA-CA2-CA6复合材料的烧结。经1 200℃预烧、1 600℃保温2 h烧成后,当La2O3的添加量为4wt%时,MA-CA2-CA6复合材料试样的显气孔率由19.2%下降至6.1%,体积密度由2.78 g/cm3上升至3.18 g/cm3,制得了MA、CA2、CA6晶相呈现交织分布、显微结构致密、有利于其力学性能改善的La2O3/MA-CA2-CA6复合材料,经1 200℃预烧、-1 600℃保温2 h烧成后的4wt% La2O3添加试样,其冷态抗压强度由317 MPa增加到了501 MPa。 In order to adapt the demands for the lightweight of materials, MgAl2O4-CaAl4O7-CaAl12O19 (MA-CA2-CA6) composite was developed at 1 400-1 600℃ by addition of La2O3 micro powder, and the effect of La2O3 addition on sintering behavior, microstructure and mechanical properties of the composite was discussed. The results show that the added La2O3 dissolves to the CA6 phases of MA-CA2-CA6 composite, causing the lattice distortion of CA6 crystal, and the abnormal grain growth rate of CA6 to be decelerated, resulting in a more equiaxed morphology instead of anisotropic growth to platelet structure, thereby further contributes to the elimination of pores located between the initial plate-like CA6 grains. The disappearance of the platelet structures is favorable to Mg2+ diffusion and thus indirectly promotes the development of MA grains, so the sintering activity of MA-CA2-CA6 composite is comprehensively promoted. As a result, the dense microstructure is obtained, with the apparent porosity decreases from 19.2% to 6.1% and the bulk density increases from 2.78 g/cm3 to 3.18 g/cm3 after presintering at 1 200℃ and sintering at 1 600℃ for 2 h by addition of 4wt% La2O3. In addition, a texture microstructure of the crystal phase, which includes MA, CA2 and CA6, is observed in the typical back-scattered electron (BSE) images of microstructures with 4wt% La2O3 content La2O3/MA-CA2-CA6 composite samples sintered at 1 600℃ for 2 h, which is considered to be favorable to improve the mechanical properties of MA-CA2-CA6 composite, and the cold compressive strength increases from 317 MPa to 501 MPa after presintering at 1 200℃ and sintering at 1 600℃ for 2 h by addition of 4wt% La2O3. 国家自然科学基金(51174049;51374057;51574062;51574065;51574066);辽宁省教育厅资助项目(L2015275(1506181);L2015273(1506161);L2017lkyfwdf-04)
[1] | DURáN T, SERENA S, PENA P, et al. Experimental establishment of the CaAl2O4-MgO and CaAl4O7-MgO isoplethal sections within the Al2O3-MgO-CaO ternary system[J]. Journal of the American Ceramic Society, 2008, 91(2):535-543. |
[2] | GANESH I, BHATTACHARJEE S, SAHA B P, et al. A new sintering aid for magnesium aluminate spinel[J]. Ceramics International, 2001, 27(7):773-779. |
[3] | GHOSH A, DAS S K, BISWAS J R, et al. The effect of ZnO addition on the densification and properties of magnesium aluminate spinel[J]. Ceramics International, 2000, 26(6):605-608. |
[4] | TCHAMBA A B, SOFACK J C, YONGUE R, et al. Formulation of calcium dialuminate (CaO·2Al2O3) refractory cement from local bauxite[J]. Journal of Asian Ceramic Societies, 2015, 3(2):164-172. |
[5] | ALTAY A, CARTER C B, RULIS P, et al. Characterizing CA2 and CA6 using elnes[J]. Journal of Solid State Chemistry, 2010, 183(8):1776-1784. |
[6] | YAN W, LI N, HAN B Q. High-strength lightweight spinel refractories[J]. American Ceramic Society Bulletin, 2005, 84(4):9201-9203. |
[7] | YI S, HUANG Z H, HUANG J T, et al. Novel calcium hexaluminate/spinel-alumina composites with graded microstructures and mechanical properties[J]. Scientific Reports, 2014, 4(4):1-7. |
[8] | AN L, CHAN H M. R-curve behavior of in-situ-toughened Al2O3:CaAl12O19 ceramic composites[J]. Journal of the American Ceramic Society, 1996, 79(12):3142-3148. |
[9] | XU L, CHEN M, HUANG W J, et al. Effects of CaO content on sintering and lightweight of Al2O3-MgO-CaO refractories[J]. Materials Research Innovations, 2015, 19(S5):212-217. |
[10] | 汪云海, 黄春平, 夏春, 等. 添加La2O3对搅拌摩擦加工制备Ni/Al复合材料组织和性能的影响[J]. 复合材料学报, 2016, 33(9):2067-2073. WANG Yunhai, HUANG Chunping, XIA Chun, et al. Influence of La2O3 addition on structure and properties of Ni/Al composites fabricated by friction stir processing[J]. Acta Materiae Compositae Sinica, 2016, 33(9):2067-2073(in Chinese). |
[11] | CEYLANTEKIN R, AKSEL C. Improvements on the mechanical properties and thermal shock behaviours of MgO-spinel composite refractories by ZrO2 incorporation[J]. Ceramics International, 2012, 38(2):995-1002. |
[12] | AKSEL C, AKSOY T. Improvements on the thermal shock behaviour of MgO-spinel composite refractories by incorporation of zircon-3mol% Y2O3[J]. Ceramics International, 2012, 38(5):3673-3681. |
[13] | DIAZ L A, TORRECILLAS R, DE AZA A H, et al. Effect of spinel content on slag attack resistance of high alumina refractory castables[J]. Journal of the European Ceramic Society, 2007, 27(16):4623-4631. |
[14] | LUZ A P, BRAULIO M A L, TOMBA MARTINEZ A G, et al. Slag attack evaluation of in situ spinel-containing refractory castables via experimental tests and thermodynamic simulations[J]. Ceramics International, 2012, 38(2):1497-1505. |
[15] | RICE R W. Evaluating porosity parameters for porosity-property relations[J]. Journal of the American Ceramic Society, 1993, 76(7):1801-1808. |
[16] | DOMINGUEZ C, CHEVALIER J, TORRECILLAS R, et al. Thermomechanical properties and fracture mechanisms of calcium hexaluminate[J]. Journal of the European Ceramic Society, 2001, 21(7):907-917. |
[17] | WANG W, FU Z, WANG H, et al. Influence of hot pressing sintering temperature and time on microstructure and mechanical properties of TiB2 ceramics[J]. Journal of the European Ceramic Society, 2002, 22(7):1045-1049. |
[18] | AZA A H D, IGLESIAS J E, PENA P, et al. Ternary system Al2O3-MgO-CaO:Part Ⅱ, phase relationships in the subsystem Al2O3-MgAl2O4-CaAl4O7[J]. Journal of the American Ceramic Society, 2000, 83(4):919-927. |
[19] | MASCHIO R D, FABBRI B, FIORI C. Industrial applications of refractories containing magnesium aluminate spinel[J]. Transactions of the Indian Ceramic Society, 1988, 8(3):121-126. |
[20] | SINHAMAHAPATRA S, DANA K, GHOSH A, et al. Dynamic thermal study to rationalize the role of titania in reaction sintering of magnesia-alumina system[J]. Ceramics International, 2015, 41(1):1073-1078. |
[21] | URIBE R, BAUDíN C. Influence of a dispersion of aluminum titanate particles of controlled size on the thermal shock resistance of alumina[J]. Journal of the American Ceramic Society, 2003, 86(5):846-850. |
[22] | BUENO S, MORENO R, BAUDíN C. Reaction sintered Al2O3/Al2TiO5 microcrack-free composites obtained by colloidal filtration[J]. Journal of the European Ceramic Society, 2004, 24(9):2785-2791. |
[23] | ASMI D, LOW I M. Self-reinforced Ca-hexaluminate/alumina composites with graded microstructures[J]. Ceramics International, 2008, 34(2):311-316. |
[24] | JONAS S, NADACHOWSKI F, SZWAGIERCZAK D, et al. Thermal expansion of CaAl4O7-based refractory compositions containing MgO and CaO additions[J]. Journal of the European Ceramic Society, 2006, 26(12):2273-2278. |
[25] | 徐磊, 陈敏. Al2O3-MgO-CaO系耐火材料烧结性能的研究[C]//中国金属学会. 第十七届全国冶金反应工程学学术会议论文集, 2013:229-304. XU Lei, CHEN Min. Study on sintering behavior of Al2O3-MgO-CaO refractory[C]//The Chinese Society for Metals. Proceedings of the 17th national conference on metallurgical reaction engineering, 2013:229-304(in Chinese). |
[26] | LI L P, YAN Y, FAN X Z, et al. Low-temperature synthesis of calcium-hexaluminate/magnesium-aluminum spinel composite ceramics[J]. Journal of the European Ceramic Society, 2015, 35(10):2923-2931. |
[27] | LIU X Y, YANG D X, HUANG Z H, et al. In-situ synthesis of porous calcium hexa-aluminate ceramics and growth mechanism of the plate-like grains[J]. Ceramics International, 2015, 41(10):14727-14732. |
[28] | LA IGLESIA P G D L, GARCíA-MORENO O, TORRECILLAS R, et al. Influence of different parameters on calcium hexaluminate reaction sintering by spark plasma[J]. Ceramics International, 2012, 38(7):5325-5332. |
[29] | ASMI D, LOW I M. Physical and mechanical characteristics of in-situ alumina/calcium hexaluminate composites[J]. Journal of Materials Science Letters, 1998, 17(20):1735-1738. |
[30] | DOMíNGUEZ C, TORRECILLAS R. Influence of Fe3+ on sintering and microstructural evolution of reaction sintered calcium hexaluminate[J]. Journal of the European Ceramic Society, 1998, 18(9):1373-1379. |
[31] | 穆柏春, 孙旭东. 稀土对Al2O3陶瓷烧结温度、显微组织和力学性能的影响[J]. 中国稀土学报, 2002, 20(12):104-107. MU Baichun, SUN Xudong. Effect of rare earths on sintering temperature, microstructure and mechanical properties of Al2O3 ceramics[J]. Journal of the Chinese Rare Earth Society, 2002, 20(12):104-107(in Chinese). |
[32] | WU T T, ZHOU J, WU B L, et al. Effect of La2O3 content on wear resistance of alumina ceramics[J]. Journal of Rare Earths, 2016, 34(3):288-294. |
[33] | YASUOKA M, HIRAO K, BRITO M E, et al. High strength and high-fracture-toughness ceramics in the Al2O3/LaAl11O18 systems[J]. Journal of the American Ceramic Society, 1995, 78(7):1853-1856. |
[34] | JI H P, FANG M H, HUANG Z H, et al. Effect of La2O3 additives on the strength and microstructure of mullite ceramics obtained from coal gangue and γ-Al2O3[J]. Ceramics International, 2013, 39(6):6841-6846. |