全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2018 

基于图像处理的碳纤维增强树脂基复合材料固化压力-缺陷-力学性能建模与评估
Modeling and evaluation of curing pressure-defects-mechanical properties of carbon fiber reinforced resin composites based on image processing

DOI: 10.13801/j.cnki.fhclxb.20180317.001

Keywords: 复合材料,缺陷,力学性能,图像处理,固化
composite material
,defects,mechanical properties,image processing,curing

Full-Text   Cite this paper   Add to My Lib

Abstract:

利用热压罐成型工艺制备了不同固化压力条件下的碳纤维增强树脂基复合材料层合板,分析了超声相控阵C扫描图像与微观缺陷的对应关系,研究了固化压力、孔隙缺陷及力学性能之间的关联规律。结果表明:利用超声C扫描图像差异能够表征孔隙等缺陷含量,在本实验条件下,固化压力由0 MPa提高到0.6 MPa,复合材料孔隙率降低96.7%,拉伸强度(TS)和层间剪切强度(ILSS)分别提高56.1%和68.8%。在此基础上,对不同固化压力条件下制备的复合材料层合板的超声相控阵C扫描图像进行图像处理并定义成型质量指数,实现了基于C扫描图像对孔隙缺陷的定量表征。最后,通过对孔隙缺陷检测、力学性能测试及图像定量化评价结果进行数学拟合,建立了基于图像处理的固化压力-缺陷-力学性能之间的数学关联模型(CPDMP模型),并给出了成型质量指数阈值为81%,及可接受的孔隙率应不高于1.1%,相应的固化压力应不低于0.35 MPa。 The carbon fiber composite laminates were manufactured in different curing pressures by autoclave process. The relationship between the ultrasonic phased array C scanning image and the defects of microstructure was analyzed, and the correlations among curing pressure, voids and mechanical properties were studied. The results indicate that ultrasonic C scanning image can be used to characterize the content of voids. In this experiment condition, the curing pressure increases from 0 MPa to 0.6 MPa, the porosity decreases by 96.7%, and the tensile strength(TS) and interlaminar shear strength(ILSS) increase by 56.1% and 68.8%, respectively. On this basis, the C scanning images of composite laminate in different curing pressures were processed, and the forming quality index was defined. Thus, the quantitative characterization of voids based on C scanning images was realized. Finally, through mathematical fitting of the results of voids detection, mechanical properties test and image quantitative evaluation, a mathematical model(CPDMP model) among curing pressure-defects-mechanical properties based on image processing was established. In addition, the forming quality index threshold of 81%, the acceptable porosity of more than 1.1% and the corresponding curing pressure of more than 0.35 MPa were presented. 国家重点基础研究发展计划(2014CB046502);湖南科技大学博士科研启动资金(E51782)

References

[1]  邢丽英, 蒋诗才, 周正刚. 先进树脂基复合材料制造技术进展[J]. 复合材料学报, 2013, 30(2):1-9. XING Liying, JIANG Shicai, ZHOU Zhenggang. Process of manufacturing technology development of advanced polymer matrix composites[J]. Acta Materiae Compositae Sinica, 2013, 30(2):1-9(in Chinese).
[2]  顾轶卓, 李敏, 李艳霞, 等. 飞行器结构用复合材料制造技术与工艺理论进展[J]. 航空学报, 2015, 36(8):2773-2797. GU Yizhuo, LI Min, LI Yanxia, et al. Process on manufacturing technology and process theory of aircraft composite structure[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(8):2773-2797(in Chinese).
[3]  白海明, 湛利华, 李树健, 等. 基于热固性树脂基复合材料帽型加筋结构制造的硅橡胶芯模预制调型孔理论建模与实验验证[J]. 复合材料学报, 2016, 33(1):107-115. BAI Haiming, ZHAN Lihua, LI Shujian, et al. Theoretical modeling and experimental verification of prefabricated adjusting hole for silicone rubber core mold based on manufacture of resin matrix thermosetting composite hat-stiffened structure[J]. Acta Materiae Compositae Sinica, 2016, 33(1):107-115(in Chinese).
[4]  OLIVIER P, COTTU J P, FERRET B. Effects of cure cycle pressure and voids on some mechanical properties of carbon/epoxy laminates[J]. Composites, 1995, 26(7):509-515.
[5]  YOUNG W B. Compacting pressure and cure cycle for processing of thick composite laminates[J]. Composites Science and Technology, 1995, 54(3):299-306.
[6]  LIU L, ZHANG B M, WANG D F, et al. Effects of cure cycles on void content and mechanical properties of composite laminates[J]. Composite Structures, 2006, 73(3):303-309.
[7]  张宝艳, 周正刚, 庄文波. 成型压力对5428VB/T700复合材料微观结构与性能的影响[J]. 材料工程, 2009(10):67-72. ZHANG Baoyan, ZHOU Zhenggang, ZHUANG Wenbo. Influence of pressure on the microstructure and mechanical properties of 5428VB/T700 composite[J]. Journal of Materials Engineering, 2009(10):67-72(in Chinese).
[8]  朱洪艳, 李地红, 张东兴, 等. 固化压力对炭纤维复合材料层压板的孔隙和力学性能的影响[J]. 固体火箭技术, 2009, 32(6):694-697. ZHU Hongyan, LI Dihong, ZHANG Dongxing, et al. Effect of curing pressure on voids and mechanical properties of carbon fiber reinforced composite laminates[J]. Journal of Solid Rocket Technology, 2009, 32(6):694-697(in Chinese).
[9]  侯进森, 左扬, 黎玉钦. 热压罐工艺对树脂基复合材料性能影响的实验研究[C]//第十五届中国科协年会第17分会场:复合材料与节能减排研讨会论文集. 贵阳:中国科学技术协会, 2013. HOU Jinsen, ZUO Yang, LI Yuqin. Experimental study on the effect of autoclave process on the properties of resin matrix composites[C]//The Fifteenth Session of The Annual Meeting of The Association of China Seventeenth Branch Field:Symposium on Composite Materials and Energy Conservation and Emission Reduction. Guiyang:China Association for Science and Technology, 2013(in Chinese).
[10]  ASTM. Standard test methods for constituent content of composite materials:ASTM D3171-15[S]. Philadelphia:ASTM International, 2015.
[11]  马雯, 刘福顺. 玻璃纤维复合材料孔隙率对超声衰减系数及力学性能的影响[J]. 复合材料学报, 2012, 29(5):69-75. MA Wen, LIU Fushun. Effect of porosity on the attenuation coefficient and mechanical properties of glass fiber reinforced composites[J]. Acta Materiae Compositae Sinica, 2012, 29(5):69-75(in Chinese).
[12]  刘志真, 李宏运, 益小苏. 孔隙率对聚酰亚胺复合材料力学性能的影响[J]. 材料工程, 2005, 2005(9):56-58. LIU Zhizhen, LI Hongyun, YI Xiaosu. Influence of void content on mechanical properties of polyimide composite[J]. Journal of Material Engineering, 2005, 2005(9):56-58(in Chinese).
[13]  ZHANG A, LU H, ZHANG D. Effects of voids on residual tensile strength after impact of hygrothermal conditioned CFRP laminates[J]. Composite Structures, 2013, 95(1):322-327.
[14]  DONG C. Effects of process-induced voids on the properties of fibre reinforced composites[J]. Journal of Materials Science & Technology, 2016, 32(7):597-604.
[15]  GUO Z S, LIU L, ZHAN B M, et al. Critical void content for thermoset composite laminates[J]. Journal of Composite Materials, 2009, 43(17):1775-1790.
[16]  中国国家标准化管理委员会. 纤维增强塑料拉伸性能试验方法:GB/T 1447-2005[S]. 北京:中国标准出版社, 2005. Standardization Administration of China. Fiber-reinforced plastics composites-Determination of tensile properties:GB/T 1447-2005[S]. Beijing:Standard Press of China, 2005(in Chinese).
[17]  周正干, 肖鹏, 刘航航. 航空复合材料先进超声无损检测技术[J]. 航空制造技术, 2013, 424(4):38-43. ZHOU Zhenggan, XIAO Peng, LIU Hanghang. Advanced ultrasonic testing technology for aviation composites[J]. Aeronautical Manufacturing Technology, 2013, 424(4):38-43(in Chinese).
[18]  HERNANDEZ S, SKET F, GONZALEZ C, et al. Optimization of curing cycle in carbon fiber-reinforced laminates:Void distribution and mechanical properties[J]. Composites Science and Technology, 2013, 85(9):73-82.
[19]  HERNANDEZ S, SKET F, MOLINA-ALDAREGUI J M, et al. Effect of curing cycle on void distribution and inter-laminar shear strength in polymer-matrix composites[J]. Composites Science and Technology, 2011, 71(10):1331-1341.
[20]  中国塑料标准化技术委员会. 碳纤维增强塑料树脂含量试验方法:GB/T 3855-1983[S]. 北京:国家标准局, 1984. China Plastics Standardization Technical Committee. Test method for resin content of carbon fiber reinforced plastics:GB/T 3855-1983[S]. Beijing:National Bureau of Standards, 1984(in Chinese).
[21]  ASTM. Standard test method for short-beam strength of polymer matrix composite materials and their laminates:ASTM D2344/D2344M-13[S]. Philadelphia:ASTM International, 1984.
[22]  刘玲, 路明坤, 张博明, 等. 孔隙率对碳纤维复合材料超声衰减系数和力学性能的影响[J]. 复合材料学报, 2004, 21(5):116-121. LIU Ling, LU Mingkun, ZHANG Boming, et al. Effects of porosity on the ultrasonic absorption coefficient and mechanical strength of carbon/epoxy composites[J]. Acta Materiae Compositae Sinica, 2004, 21(5):116-121(in Chinese).

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133