|
- 2017
纤维缠绕复合材料夹芯圆柱体准静态压缩吸能机制
|
Abstract:
提出并设计了一种新型纤维缠绕复合材料夹芯圆柱体吸能结构单元。为探讨其在准静态压缩载荷作用下初始损伤的产生、扩展及演变规律,基于ABAQUS建立该单元数值分析模型,并开展了准静态压缩试验。数值模拟与试验现象综合分析表明,准静态压缩载荷作用下单元结构的响应具有三阶段特征,包括初始线弹性压缩阶段、渐进损伤阶段和结构破坏阶段。固体浮力芯材在压缩载荷作用下产生塑性损伤变形和剪切断裂破坏,纤维缠绕复合材料表层在芯材横向膨胀效应引起的环向应力作用下发生环向纤维的拉伸断裂破坏,导致单元结构稳态吸能过程的终止。研究结果表明,该单元比吸能效率远高于传统的复合材料圆柱壳结构。 The new energy absorption structure element of filament wound composite sandwich cylinder has been put forward and designed. In order to investigate the damage formation, extension and evolvement law of the element, the numerical analysis model was built by ABAQUS and the experiments were conducted under quasi-static compression loading. Comprehensive analysis of numerical simulation and experimental results show that the quasi-static compression process can be divived into three stages, including the initial elastic compression stage, the progressive damage stage and the structural damage stage. The plastic damage deformation and shear failure of solid buoyant core occur under compression load. Then steady energy absorption process is terminated by the tensile breaking of hoop fibers owing to transverse expansion effect of solid buoyant core. The results show that the energy absorption efficiency of this element is much higher than that of the traditional composite culindrical shell structure. 国家自然科学基金面上项目(51479205)
[1] | 陈立明, 戴政, 范华林, 等. 轻质点阵夹层圆柱壳的设计与分析[J]. 清华大学学报(自然科学版), 2012, 52(4): 489-493. CHEN Liming, DAI Zheng, FAN Hualing, et al. Design and analysis of lightweight lattice sandwich cylinders[J]. Journal of Tsinghua University (Scienceand Technology), 2012, 52(4): 489-493 (in Chinese). |
[2] | LI X, WANG Z H, ZHU F, et al. Response of aluminium corrugated sandwich panels under air blast loadings: Experiment and numerical simulation[J]. International Journal of Impact Engineering, 2014, 65: 79-88. |
[3] | YAN L L, YU B, HAN B, et al. Compressive strength and energy absorption of sandwich panels with aluminum foam filled corrugated cores[J]. Composites Science and Technology, 2013, 86: 142-148. |
[4] | YAN L L, HAN B, YU B, et al. Three-point bending of sandwich beams with aluminum foam-filled corrugated cores[J]. Materials & Design, 2014, 60: 510-519. |
[5] | 徐芝纶.弹性力学[M].北京:高等教育出版社, 2006:107-110. XU Zhilun. Elastic mechanics[M]. Beijing: Higher Education Press, 2006: 107-110 (in Chinese). |
[6] | REANY J, GRENESTEDT J L. Corrugated skin in a foam core sandwich panel[J]. Composite Structures, 2009, 89 (3): 345-355. |
[7] | BIAGI R, BART-SMITH H. In-plane column response of metallic corrugated core sandwich panels[J]. International Journal of Solids and Structures, 2012, 49(26): 3901-3914. |
[8] | SUN F F, FAN H L, ZHOU C W, et al. Equivalent analysis and failure prediction of quasi-isotropic composite sandwich cylinder with lattice core under uniaxial compression[J]. Composite Structures, 2013, 101: 180-190. |
[9] | HE W, GUAN Z D, LI X, et al. Prediction of permanent indentation due to impact on laminated composites based on an elasto-plastic model incorporating fiber failure[J]. Composite Structures, 2013, 96(4): 232-242. |
[10] | ISMAIL M S, PURBOLAKSONO J, ANDRIYANA A, et al. The use of initial imperfection approach in design process and buckling failure evaluation of axially compressed composite cylindrical shells[J]. Engineering Failure Analysis, 2015, 51: 20-28. |
[11] | 庄茁, 由小川, 廖剑晖, 等. 基于ABAQUS的有限元分析和应用[M].北京:清华大学出版社, 2009:219-223. ZHUANG Zuo, YOU Xiaochuan, LIAO Jianhui, et al. Finite element analysis and application based on ABAQUS[M]. Beijing: Tisinghua University Press, 2009:219-223 (in Chinese). |
[12] | LIM J Y, BART-SMIT H H. Theoretical approach on the dynamic global buckling response of metallic corrugated core sandwich columns[J]. International Journal of Non-Linear Mechanics, 2014, 65:14-31. |
[13] | 闫光, 韩小进, 阎楚良, 等. 复合材料圆柱壳轴压屈曲性能分析[J]. 复合材料学报, 2014, 31(3): 781-787. YAN Guang, HAN Xiaojing, YAN Chuliang, et al. Buckling analysis of composite cylindrical shell under axial compression load[J]. Acta Materiae Compositae Sinica, 2014, 31(3): 781-787 (in Chinese). |
[14] | JIN F N, CHEN H L, ZHAO L, et al. Failure mechanisms of sandwich composites with orthotropic integrated woven corrugated cores: Experiments[J]. Composite Structures, 2013, 98: 53-58. |
[15] | XIONG J, GHOSH R, MA L, et al. Bending behavior of lightweight sandwich-walled shells with pyramidal truss cores[J]. Composite Structures, 2014, 116: 793-804. |
[16] | 卢天健, 何德坪, 陈常青, 等. 超轻多孔金属材料的多功能特性及应用[J]. 力学进展, 2006, 36(4): 517-535. LU Tianjian, HE Deping, CHEN Changqing, et al. The multi-functionality of ultra-light porous metals and their applications[J]. Advances in Mechanics, 2006, 36 (4): 517-535 (in Chinese). |
[17] | 范华林, 杨卫. 轻质高强点阵材料及其力学性能研究进展[J]. 力学进展, 2007, 37(1): 99-112. FAN Hualing, YANG Wei. Development of lattice materials with high specific stiffness and strength[J]. Advances in Mechanics, 2007, 37 (1): 99-112 (in Chinese). |
[18] | 赵效东. 海洋工程结构物碰撞失效准则研究[D]. 哈尔滨: 哈尔滨工程大学, 2010. ZHAO Xiaodong. Research of failure criterion of offshore structural collision [D]. Harbin: Harbin Engineering University, 2010 (in Chinese). |
[19] | TAKANO A. Buckling of thin and moderately thick anisotropic cylinders under combined torsion and axial compression[J]. Thin-Walled Structures, 2011, 49(2): 304-316. |
[20] | ABAQUS Inc Ltd. Abaqus theory manual[M]. Version 6.12. Rhode Island: ABAQUS Inc Ltd, 2012. |
[21] | DESHPANDE V S, FLECK N A. Isotropic constitutive models for metallic foams[J]. Journal of the Mechanics & Physics of Solids, 2000, 48(6-7): 1253-1283. |