全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2017 

基于锥形量热法的典型碳纤维/环氧复合材料燃烧特性
Combustion characteristics of typical carbon fiber/epoxy composites based on the method of CONE

DOI: 10.13801/j.cnki.fhclxb.20161109.001

Keywords: 碳纤维/环氧,复合材料,锥形量热仪,燃烧特性,热释放速率,电镜扫描
carbon fiber/epoxy
,composites,cone calorimeter,combustion characteristics,heat release rate,SEM

Full-Text   Cite this paper   Add to My Lib

Abstract:

采用锥形量热仪实验研究环氧树脂基体、T300碳纤维/环氧复合材料及T300碳纤维/环氧-泡沫层合板(上下层为T300碳纤维/环氧复合材料,中间层为4 mm厚的Divinycell H60泡沫芯材)在不同火灾环境下的燃烧性能。对比分析其点燃时间、热释放速率、总烟气释放量和CO生成速率等燃烧特性参数的变化规律。利用SEM测试T300碳纤维/环氧复合材料燃烧前、后表面形貌图像和环氧树脂基体和T300碳纤维/环氧复合材料燃烧形成炭层的形貌图像,分析碳纤维在碳纤维/环氧复合材料热解、燃烧过程中的影响作用。结果表明,随热辐射强度的增加,三种实验样品的平均点燃时间均缩短,热释放速率峰值和300 s内热释放速率均值均增大,峰值出现时间提前,燃烧后残余率均降低。碳纤维对环氧树脂热解和燃烧起到抑制作用,其点燃、放热及达到热释放速率峰值的时间延后,T300碳纤维/环氧-泡沫层合板中泡沫芯材的燃点较低,使其平均点燃时间、热释放速率峰值出现时间及CO开始释放时间提前。T300碳纤维/环氧复合材料和T300碳纤维/环氧-泡沫层合板燃烧后均出现明显的分层现象,力学性能丧失,整体结构被破坏。碳纤维的存在能够有效抑制碳纤维/环氧复合材料的热解及燃烧,并能有效抑制在燃烧过程中产生融滴、喷溅和大量黑烟。 Combustion characteristics of epoxy resin matrix of T300 carbon fiber/epoxy composite and T300 carbon fiber/epoxy composite-foam laminate(there are a layer of T300 carbon fiber/epoxy composite in the upper and lower parts and a layer of 4 mm thick H60 Divinycell foam core material in the middle part) were experimentally investigated under different fire conditions using cone calorimeter. The change law of the combustion characteristic parameters of the ignition time, heat release rate, total smoke release quantity and CO generation rate were analyzed. The morphology images of T300 carbon fiber/epoxy composite before and after combustion, and the carbon layer morphology image of epoxy resin matrix and T300 carbon fiber/epoxy composite after combustion were observed by SEM. The influence of carbon fiber on pyrolysis and combustion of carbon fiber/epoxy composite was analyzed. The results show that the mean ignition time is shortened, the peak and first 300 s average of heat release rate are increased, the peak time is in advanced, and the residual percentage after burning is decreased with the increase in radiation heat flux. The ignition time, heat release and peak time of heat release rates of T300 carbon fiber/epoxy composite are delayed because of the inhibiting effect of the carbon fiber on pyrolysis and combustion of epoxy resin matrix. The ignition time, peak time of heat release rates and CO release time of T300 carbon fiber/epoxy composite-foam laminate are in advanced due to the low ignite of the foam core material.There ware obvious stratification phenomenon on T300 epoxy resin/carbon fiber composite and T300 carbon fiber/epoxy composite-foam laminate after burning, which results in the mechanical properties lose and the overall structure being destroyed. Carbon fiber has the inhibition effects on the pyrolysis and combustion of composites and the inhibition of the droplet, splashing and a lot of smoke generation in the combustion process. 辽宁省科学事业公益研究基金(GY2014-C-005);辽宁省自然科学基金(201602567);辽宁省教育厅科学研究项目(L201625)

References

[1]  QUANG D, THOMAS R, JOCELYN L, et al.Thermal degradation of epoxy resin/carbon fiber composites:Influence of carbon fiber fractionon the fire reaction properties and on the gaseous species release[J]. Fire and Materials, 2016, 40: 27-47.
[2]  华志恒, 周晓军, 刘继忠.碳纤维复合材料(CFRP)孔隙的形态特征[J]. 复合材料学报, 2005, 22(6): 103-107. HUA Zhiheng, ZHOU Xiaojun, LIU Jizhong. Mophology of pores in carbon fiber reinforced platics[J]. Acta Materiae Compositae Sinica, 2005, 22(6): 103-107 (in Chinese).
[3]  刘巍, 张天骄, 包建文, 等. 树脂交联结构特征对复合材料纵向压缩性能的影响[J]. 航空材料学报, 2016, 36(1): 75-80. LIU Wei, ZHANG Tianjiao, BAO Jianwen, et al. Efects of epoxy resin cross-linked structure characteristics on longitudinal compressive performance of carbon fiber reinforced composites[J]. Journal of Aeronautical Matrials, 2016, 36(1): 75-80 (in Chinese).
[4]  胡晶, 李晓星, 张天敏, 等. 碳纤维复合材料传动轴承扭性能优化设计[J]. 复合材料学报, 2009, 26(6): 177-181. HU Jing, LI Xiaoxing, ZHANG Tianmin, et al. Design optimization on torsion property of carbon-fiber composite drive shaft[J]. Acta Materiae Compositae Sinica, 2009, 26(6): 177-181 (in Chinese).
[5]  袁华, 王成国, 卢文博, 等. PAN 基碳纤维表面液相氧化改性研究[J]. 航空材料学报, 2012, 32(2): 65-68. YUAN Hua, WANG Chengguo, LU Wenbo, et al.Liquid-phase oxidation modification of pan-based carbon fiber surface[J]. Journal of Aeronautical Materals, 2012, 32(2): 65-68 (in Chinese).
[6]  MARIA W, DOROTA W, WERONIKA G, et al.Functionalization effect on physico-mechanical properties of multi-walled carbon nanotubes/epoxy composites[J]. Polymers for Advanced Technologies, 2011, 22: 48-59.
[7]  KIM M, SUNG D H, KONG K H, et al. Characterization of resistive heating and themoelectric behavior of discontinuous carbon fiber-epoxy composites[J]. Composites: Part B, 2016, 90: 37-44.
[8]  乔琨. 改性高温高韧环氧树脂及其CF增强复合材料环境适应性研究[D].山东:山东大学, 2013. QIAO Kun.Environmental adaptability of modified epoxy and its CF reinforced compsite[D].Shandong:Shandong University, 2013 (in Chinese).
[9]  樊威, 李嘉禄.热氧老化对碳纤维织物增强聚合物基复合材料弯曲性能的影响[J]. 复合材料学报, 2015, 32(5): 1260-1270. FAN Wei, LI Jialu.Effects of thermo-oxidative aging on flexural properties of carbon fiber fabric reinforced polymer matrix composites[J]. Acta Materiae Compositae Sinica, 2015, 32(5): 1260-1270 (in Chinese).
[10]  李仕通.铺层方式对碳纤维环氧复合材料导热性能的影响研究[D]. 长沙: 国防科学技术大学, 2012. LI Shitong.Study on the effect of lay-up on the themal conductivities of carbon fiber/epoxy resin composites [D].Changsha:National University of Defense Technolgy, 2012 (in Chinese).
[11]  丁小马.碳纤维复合材料汽车前地板成型工艺及性能研究[D]. 上海: 东华大学, 2015. DING Xiaoma. Processing and properties research of carbon fiber composite front floor of autombile[D]. Shanghai:Donghua University, 2015 (in Chinese).
[12]  张艳萍, 熊金平, 左禹.碳纤维/环氧树脂复合材料的热氧老化机理[J]. 北京化工大学学报, 2007, 34(5): 523-539. ZHANG Yanping, XIONG Jinping, ZUO Yu.Thermo-oxidative aging mechanisms of carbon fiber/epoxyresin compound materials[J]. Journal of Beijing University of Chemical Technology, 2007, 34(5): 523-539 (in Chinese).
[13]  郝权, 蒋曙光, 位爱竹, 等. 锥形量热仪在火灾科学研究中的应用[J]. 能源技术与管理, 2009, 1: 72-75. HAO Quan, JIANG Shuguang, WEI Aizhu, et al.Application of cone calorimeter in research of fire science[J]. Energy Technology and Management, 2009, 1: 72-75 (in Chinese).
[14]  王庆国, 张军, 张峰.锥形量热仪的工作原理及应用[J]. 仪器技术与应用, 2003(6): 36-39. WANG Qingguo, ZHANG Jun, ZHANG Feng.The principle and application of the cone calorimeter[J]. Modern Scientific Instruments, 2003(6): 36-39 (in Chinese).
[15]  霍然, 程晓舫, 谢家生.烟草行业的火灾特点及其监测方法的讨论[J]. 中国安全科学学报, 1995(5):155-159. HUO Ran, CHENG Xiaofang, XIE Jiasheng.Some discussions on fire behavior in cigarette factories and its proper detect techniques[J]. China Safety Science Journal, 1995(5):155-159 (in Chinese).
[16]  PERRET B, SCHARTEL B, ST?? K, et al.Novel DOPO-based flame retardants in high-performance carbon fibre epoxy composites for avition[J]. European Polymer Journal, 2011, 47:1081-1089.
[17]  李海朝, 贾普友.用锥形量热仪研究酥油的燃烧性[J]. 食品工业科技, 2013, 34(14): 91-98. LI Haichao, JIA Puyou.An investigation of flammabiity of ghee by using cone calorimter[J]. Science and Technology of Food Industry, 2013, 34(14): 91-98 (in Chinese).
[18]  BABRAUSKAS V.Estimating room flashover potential[J]. Fire Technology, 1981, 17(1): 94-103.
[19]  顾军渭, 张广成, 董善来, 等. 防火涂料炭层形成及阻燃机理的研究[J]. 西安石油大学学报(自然科学版), 2006, 21(4): 75-78. GU Junwei, ZHANG Guangcheng, DONG Shanlai, et al.Study on the formation of the carbonaceous layer of flame retarding coating and its flame retarding mechanism[J]. Journal of Xi’an Shiyou University(Natural Science Edition), 2006, 21(4): 75-79 (in Chinese).

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133