|
- 2017
磺胺嘧啶银/聚乙烯醇水凝胶复合材料的制备及性能表征
|
Abstract:
采用e-Beam电子辐射和冻融循环相结合的方法制备了磺胺嘧啶银(SD-Ag)/聚乙烯醇(PVA)水凝胶。研究了制备工艺对PVA水凝胶的性能的影响。通过拉伸性能测试、吸水率检测、SEM和FT-IR等表征,考察了PVA浓度(占总质量5%~15%)、冻融与辐射处理等对PVA水凝胶拉伸强度、断裂伸长率、吸水性、凝胶含量和微观结构等的影响。结果表明:随着PVA浓度增大,PVA水凝胶的拉伸强度提高。当PVA浓度为15%、辐射剂量为25 kGy时,单独辐射、辐射后冻融及冻融后辐射三种工艺制备的PVA水凝胶拉伸强度分别为0.023 MPa、0.048 MPa、0.028 MPa,吸水率分别为为95%、45%、63%,说明经冻融处理的水凝胶力学强度提高,吸水率有所下降。然后,选择适当的制备工艺并在PVA水凝胶中加入SD-Ag,考察了SD-Ag/PVA水凝胶的抑菌性能,抑菌活性测试结果显示,随着SD-Ag含量的增加,SD-Ag/PVA水凝胶的抑菌效果增强,而且其对革兰式阴性菌(大肠杆菌)的抑菌效果优于其对革兰式阳性菌(金黄色葡萄球菌)的抑菌效果。 A series of sulfadiazine Ag(SD-Ag)/polyvinyl alcohol(PVA)hydrogel composites were preparated by e-Beam irradiation combining with freeze-thawing. The influence of preparation process of polyvinyl alcohol (PVA) hydrogel on its properties was investigated. The tensile strength, elongation at break, water absorption, gel content, morphologies of the surfaces and their relationships with the mass fraction of PVA and preparation process were characterized using tensile testing machine, SEM and FT-IR.The mechanical tests show that the tensile strength of PVA hydrogel increases with the mass fraction of PVA(5%-15%). When the mass fraction of PVA is 15%, and the irradiation doses is 25 kGy, the tensile strength of PVA hydrogel is 0.023 MPa, 0.048 MPa, 0.028 MPa and the water absorption is 95%, 45%, 63%, by e-Beam irradiation alone, freeze-thawing after irradiation and irradiation after freeze-thawing, respectively, which indicate that e-Beam irradiation combining with freeze-thawing increases the tensile strength and decreses the water absorption of the PVA hydrogel. The antibacterial activity of SD-Ag/PVA hydrogel was investigated after adding SD-Ag into the PVA hydrogel. The zones of inhibition show that the antibacterial activities can be enhanced with the mass fraction of SD-Ag increasing and that the composites have higher antibacterial activity towards Gram-negative bacteria (E. coli) than Gram-positive bacteria (S.aureus). 青年科学基金(51403197)
[1] | EL-MOHDY H L. Radiation synthesis of nanosilver/poly vinyl alcohol/cellulose acetate/gelatin hydrogels for wound dressing[J]. Journal of Polymer Research, 2013, 20(6):177-189. |
[2] | KUMAR A, JAISWAL M. Design and in vitro investigation of nanocomposite hydrogel based in situ spray dressing for chronic wounds and synthesis of silver nanoparticles using green chemistry[J]. Journal of Applied Polymer Science, 2016, 133(14):43260-43274. |
[3] | AFSHARI M J, SHEIKH N. AFARIDEH H. PVA/CM-chitosan/honey hydrogels prepared by using the combined technique of irradiation followed by freeze-thawing[J]. Radiation Physics and Chemistry, 2015, 113:28-35. |
[4] | NGUYEN N, LIU J H. Fabrication and characterization of poly(vinyl alcohol)/chitosan hydrogel thin films via UV irradiation[J]. European Polymer Journal, 2015, 49(12):4201-4211. |
[5] | EGHBALIFAMA N, FROUNCHIA M, DADBIN S. Antibacterial silver nanoparticles in polyvinyl alcohol/sodium alginateblend produced by gamma irradiation[J]. International Journal of Biological Macromolecules, 2015, 80:170-176. |
[6] | 陈煜. 磺胺嘧啶银的研究进展[J]. 中国现代药物应用, 2013, 7(23):224-225. CHEN Yu. Recent advance of silver sulfadiazine[J]. China Journal Modern Drug Applied, 2013, 7(23):224-225(in Chinese). |
[7] | OLIVEIRA R N, ROUZE R, QUILTY B, et al. Mechanical properties and in vitro characterization of polyvinyl alcoholnano-silver hydrogel wound dressings[J]. Interface Focus, 2014, 4(1):20130049. |
[8] | 王宗良, 张宁, 王宇, 等. 介孔纳米羟基磷灰石/左旋聚乳酸复合材料的制备及性能[J]. 复合材料学报, 2015, 32(6):88-94. WANG Zongliang, ZHANG Ning, WANG Yu, et al. Preparation and propoties of mesporous nano hydroxyapatite/poly(L-lactide) composites[J]. Acta Materiae Compositae Sinica, 2015, 32(6):88-94(in Chinese). |
[9] | KIM T, AN D B, et al. Creating stiffness gradient polyvinyl alcohol hydrogel using a simple gradual freezingethawing method to investigate stem cell differentiation behaviors[J]. Biomaterials, 2015, 40:51-60. |
[10] | 王卫卫. 载磺胺嘧啶银α-环糊精聚轮烷的制备与性能研究[D]. 广州:华南理工大学, 2014. WANG Weiwei. Preparation and properties of α-cyclodextrin polyrotaxanes loading sliver sulfadiazine[D]. Guangzhou:South China University of Technology, 2014(in Chinese). |
[11] | ENGLER A C, TAN J P, et al. Antimicrobial polycarbonates:Investigating the impact of balancing charge and hydrophobicity using a same-centered polymer approach[J]. Biomacromolecules, 2013, 14(12):4331-4339. |
[12] | LEAWHIRAN N, PAVASANT N, SOONTORNVIPART K, et al. Gamma irradiation synthesis and characterization of AgNP/gelatin/PVA hydrogels for antibacterial wound dressings[J]. Journal of Applied Polymer Science, 2015, 131(23):205-212. |
[13] | FAN L, YANG H, YANG J, et al. Preparation and characterization of chitosan/gelatin/PVA hydrogel for wound dressings[J]. Carbohydrate Polymers, 2016, 146:427. |
[14] | YANG X, LIU Q, CHEN X, et al. Investigation of PVA/ws-chitosan hydrogels prepared by combined γ-irradiation and freeze-thawing[J]. Carbohydrate Polymers, 2007, 73(3):401-408. |
[15] | 何世超, 王宪龙, 张慧珍, 等. 磺胺类药物化学研究新进展[J]. 中国科学, 2016, 46(9):823-847. HE Shichao, WANG Xianlong, ZHANG Huizhen, et al. Recent advance in sulfonamide-based medicinal chemistry[J]. Science China Press, 2016, 46(9):823-847(in Chinese). |
[16] | 侯硕豪, 潘诗卉, 刘辛悦, 等. 紫外辐射加速磺胺嘧啶生物降解的机理[J]. 环境工程学报, 2015, 9(11):5376-5380. HOU Shuohao, PAN Shihui, LIU Xinyue, et al. Mechanism of UV photolysis for accelerating sulfadiazine biodegradation[J]. Chinese Journal of Environmental Engineering, 2015, 9(11):5376-5380(in Chinese). |
[17] | 闫静静, 郎轶咏, 王强, 等. 新型磺胺嘧啶银微球的制备与释放度研究[J]. 医药导报, 2011, 30(8):1072-1075. YAN Jingjing, LANG Yiyong, WANG Qiang, et al. Preparation and in vitro release of the new-type microspheres of silver sulfadiazine[J]. Herald of Medicine, 2011, 30(8):1072-1075(in Chinese). |
[18] | GAO L, GAN H, MENG Z Y, et al. Evaluation of genipin-crosslinked chitosan hydrogels as a potentialcarrier for silver sulfadiazine nanocrystals[J]. Colloids and Surfaces B:Bioin-terfaces, 2016, 148:343-353. |
[19] | WANG M, FENG X W, WANG T F, et al. Synthesis and characterization of an injectable and self-curing poly(methyl methacrylate) cement functionalized with a biomimetic chitosan-poly(vinyl alcohol)/nano-sized hydroxyapatite/silver hydrogel[J]. Royal Society Chemistry Advances, 2016, 6(65):60609-60619. |
[20] | PUNIA A, MANCUSO A, et al. Nonhemolytic and antibacterial acrylic copolymers with hexamethyleneamine and poly(ethylene glycol) side chains[J]. ACS Macro Letters, 2015, 4(4):426-430. |