全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2018 

CFRP-钢界面粘结性能试验与数值模拟
Experimental study and numerical simulation for bond behavior of interface between CFRP and steel

DOI: 10.13801/j.cnki.fhclxb.20180316.001

Keywords: 碳纤维增强聚合物基复合材料,钢板,粘结界面,破坏形态,粘结滑移本构,抗剪承载力
carbon fiber reinforced polymer composites
,steel plate,bond interface,failure mode,bond-slip constitutive,shear bearing capacity

Full-Text   Cite this paper   Add to My Lib

Abstract:

碳纤维增强聚合物基复合材料(CFRP)与钢板的界面粘结性能为CFRP加固钢结构的关键问题之一。开展了17个CFRP板-钢板单搭接试件的拉伸剪切试验,研究了不同环氧粘结剂与CFRP材料的CFRP-钢界面力学行为和破坏模式;分析了粘结剂类型和CFRP材料对界面粘结滑移本构和界面剪切性能的影响,讨论了其承载力计算方法。结果表明:采用不同的粘结剂或CFRP材料,界面破坏形式和抗剪承载力均差异较大。采用Sika 330、Lica粘结剂的试件为CFRP板或钢板与胶层的界面破坏,采用Araldite粘结剂的试件为CFRP板浅表层离,采用Sika 30粘结剂的试件为胶层内聚破坏,采用SF(Sika S512/80)碳板的试件为CFRP板深层层离;Araldite试件的抗剪承载力为其他试件的1.7~2.9倍。Sika 330、Araldite及Lica试件粘结滑移曲线无明显下降段,属脆性破坏,而Sika 30与SF试件存在缓坡下降段,失效前有一定征兆;SF试件的粘结滑移本构可简化为三折线模型,其余试件则可简化为双线性模型。SF试件抗剪承载力需用Xia-a模型表征,其余试件则可用Xia-b模型表征。基于粘聚力模型对界面力学行为进行了数值模拟,结果表明,粘聚力模型可以较好地模拟界面的非线性力学行为,剥离应力对本单搭接试件的界面粘结强度影响很小。 The bond performance between carbon fiber reinforced polymer composites (CFRP) and steel plate is one of the key problems in strengthening steel structure with CFRP. Tensile-shear tests of 17 CFRP lamina-steel plate single-lap specimens were conducted, the mechanical behavior and failure modes of CFRP-steel interface of specimens with different epoxy adhesives and CFRP materials were studied. The influences of adhesive types and CFRP materials on interfacial bond-slip constitutive and shear bearing capacity were analyzed, and the calculation methods of interfacial shear capacity were discussed. Results show that interface failure modes and ultimate bearing capacity are significantly different for specimens with different adhesives or CFRP materials. The failure mode for specimens with Sika 330 and Lica adhesive is the mixed mode of CFRP-adhesive and steel-adhesive interface debonding, and failure modes for specimens with Araldite adhesive, Sika 30 adhesive, and SF (Sika S512/80) lamina are CFRP superficial delamination, adhesive failure, and CFRP deep layer delamination, respectively. The ultimate bearing capacity of Araldite specimen is 1.7~2.9 times of the other specimens. No descending branches are found in bond-slip curves for Sika 330, Araldite, and Lica specimens, which are characterized by brittle fracture of interfaces. However, low descending branches are found in bond-slip curves for Sika 30 and SF specimens, and forewarning signs occur before interfacial failure. The bond-slip constitutive model for the SF specimens can be simplified to trilinear model, while those for the other specimens can be simplified to bilinear models. The ultimate bearing capacity for SF specimens should be represented by Xia-a model, while those for the other specimens can be represented by Xia-b model. The mechanical behavior of the interface is numerically simulated based on cohesive zone model. Results show that the nonlinear mechanical behavior of the interface can be well simulated by the cohesive zone

References

[1]  LIU K, WU Y. Analytical identification of bond-slip relationship of EB-FRP joints[J]. Composites Part B:Engineering, 2012, 43(4):1955-1963.
[2]  邓江东, 宗周红, 黄培彦. FRP-混凝土界面疲劳性能分析[J]. 复合材料学报, 2010, 27(1):155-161. DENG J D, ZONG Z H, HUANG P Y. Analysis of FRP-concrete interfacial fatigue properties[J]. Acta Materiae Compositae Sinica, 2010, 27(1):155-161(in Chinese).
[3]  朱德举, 姚明侠, 张怀安, 等. 动态拉伸荷载下温度对CFRP/钢板单搭接剪切接头力学性能的影响[J]. 土木工程学报, 2016(8):28-35. ZHU D J, YAO M X, ZHANG H A, et al. Temperature effect on the mechanic properties of CFRP/steel single lap shear joints under dynamic tensile loading[J]. China Civil Engineering Journal, 2016(8):28-35(in Chinese).
[4]  AL-ZUBAIDY H, AL-MAHAIDI R, ZHAO X. Experimental investigation of bond characteristics between CFRP fabrics and steel plate joints under impact tensile loads[J]. Compo-site Structures, 2012, 94(2):510-518.
[5]  WU C, ZHAO X L, CHIU W K, et al. Effect of fatigue loading on the bond behaviour between UHM CFRP plates and steel plates[J]. Composites Part B:Engineering, 2013, 50:344-353.
[6]  BORRIE D, ZHAO X L, RAMAN R K S, et al. Fatigue performance of CFRP patched pre-cracked steel plates after extreme environmental exposure[J]. Composite Structures, 2016, 153:50-59.
[7]  LU X Z, TENG J G, YE L P, et al. Bond-slip models for FRP sheets/plates bonded to concrete[J]. Engineering Structures, 2005, 27(6):920-937.
[8]  冯新权, 刘鹏飞, 陈瑛. FRP-混凝土界面黏结-滑移关系反演分析[J]. 河海大学学报(自然科学版), 2010, 38(5):564-568. FENG X Q, LIU P F, CHEN Y. Inverse analysis of bond-slip relationship of FRP sheet-concrete interface[J]. Journal of Hohai University (Natural Sciences), 2010, 38(5):564-568(in Chinese).
[9]  刘素丽. 碳纤维布与钢板的粘结机理研究[D]. 武汉:武汉大学, 2004. LIU S L. Experimental research on mechanism of bond between carbon fiber reinforced polymer and steel plate[D]. Wuhan:Wuhan University, 2004(in Chinese).
[10]  ZHAO X, ZHANG L. State-of-the-art review on FRP strengthened steel structures[J]. Engineering Structures, 2007, 29(8):1808-1823.
[11]  BAI Y, NGUYEN T C, ZHAO X L, et al. Environment-assisted degradation of the bond between steel and carbon-fiber-reinforced polymer[J]. Journal of Materials in Civil Engineering, 2014, 26(9):04014051(8).
[12]  ZHAO X, BAI Y, AL-MAHAIDI R, et al. Effect of dynamic loading and environmental conditions on the bond between CFRP and steel:State-of-the-art review[J]. Journal of Composites for Construction, 2014, 18(3):A4013005(11).
[13]  AL-MOSAWE A, AL-MAHAIDI R, ZHAO X L. Effect of CFRP properties, on the bond characteristics between steel and CFRP laminate under quasi-static loading[J]. Construction and Building Materials, 2015, 98:489-501.
[14]  HE J, XIAN G. Debonding of CFRP-to-steel joints with CFRP delamination[J]. Composite Structures, 2016, 153:12-20.
[15]  陆新征, 叶列平, 滕锦光, 等. FRP-混凝土界面粘结滑移本构模型[J]. 建筑结构学报, 2005, 26(4):10-18. LU X Z, YE L P, TENG J G, et al. Bond-slip model for FRP-to-concrete interface[J]. Journal of Building Structures, 2005, 26(4):10-18(in Chinese).
[16]  刘生纬, 张家玮, 赵建昌, 等. 硫酸盐干湿交替对碳纤维增强环氧树脂-混凝土界面粘结性能的影响[J]. 复合材料学报, 2018, 35(1):16-23. LIU S W, ZHANG J W, ZHAO J C, et al. Influence of fry-wet alternation of sulfate on bonding performance of carbon fiber reinforced epoxy-concrete interface[J]. Acta Materiae Compositae Sinica, 2018, 35(1):16-23(in Chinese).
[17]  FAWZIA S, ZHAO X L, AL-MAHAIDI R. Bond-slip models for double strap joints strengthened by CFRP[J]. Composite Structures, 2010, 92(9):2137-2145.
[18]  XIA S H, TENG J G. Behaviour of FRP-to-steel bonded joints[C]//International Symposium on Bond Behaviour of FRP in Structures, BBFS 2005. Hong Kong:International Institute for FRP in Construction, 2005.
[19]  WU C, ZHAO X, DUAN H, et al. Bond characteristics between ultra high modulus CFRP laminates and steel[J]. Thin-Walled Structures, 2012, 51:147-157.
[20]  HESHMATI M, HAGHANI R, AL-EMRANI M. Durability of bonded FRP-to-steel joints:Effects of moisture, de-icing salt solution, temperature and FRP type[J]. Composites Part B:Engineering, 2017, 119:153-167.
[21]  FERNANDO N D. Bond behaviour and debonding failures in CFRP-strengthened steel members[D]. Hong Kong:Hong Kong Polytechnic University, 2010.
[22]  卢亦焱, 张号军, 刘素丽. 碳纤维布与钢板黏结剪切性能研究[J]. 土木工程学报, 2006, 39(10):60-67. LU Y Y, ZHANG H J, LIU S L. A study on the adhesive shear performance of steel plates bonded by carbon fiber reinforced polymer[J]. China Civil Engineering Journal, 2006, 39(10):60-67(in Chinese).
[23]  WANG H T, WU G, DAI Y T, et al. Experimental study on bond behavior between CFRP plates and steel substrates using digital image correlation[J]. Journal of Composites for Construction, 2016, 20(6):04016054.
[24]  ASTM. Standard test method for strength properties of adhesives in shear by tension loading of single lap-joint laminated assemblies:ASTM D3165[S]. Philadelphia:ASTM International, 2007.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133