|
- 2016
纳米MgO/高密度聚乙烯复合材料的性能
|
Abstract:
通过熔融共混法制备了纳米MgO/高密度聚乙烯(nano-MgO/HDPE)复合材料, 并对该复合材料的力学性能进行了测试, 用SEM对nano-MgO在nano-MgO/HDPE复合材料中的分散情况进行了观测, 通过紫外可见光谱研究了复合材料的紫外屏蔽性能, 通过TG研究了复合材料的热稳定性, 通过DSC研究了复合材料的结晶性能。结果表明:虽然nano-MgO的引入使HDPE的热分解温度有所降低, 但nano-MgO的引入提高了HDPE的冲击强度、弯曲强度及紫外屏蔽性能。当nano-MgO含量为2wt%时, nano-MgO/HDPE复合材料的冲击强度比纯HDPE高14%。当nano-MgO含量为4wt%时, nano-MgO/HDPE复合材料的弯曲强度比纯HDPE高18%。nano-MgO在nano-MgO/HDPE复合材料中的分散均匀, 且nano-MgO的引入可以促进HDPE的结晶。 Nano-MgO/high-density polyethylene (nano-MgO/HDPE) composites were prepared by melt blending method, and the mechanical properties of the composites were tested. The dispersity of nano-MgO in nano-MgO/HDPE composites was observed by SEM. The ultraviolet-shielding property, thermal stability and crystallization property of nano-MgO/HDPE composites were tested by ultraviolet-visible absorption spectra, TG and DSC respectively. The results show that although the addition of nano-MgO reduces the thermal decomposition temperature of HDPE, it improves the impact strength, flexural strength and ultraviolet-shielding property of HDPE. When the content of nano-MgO is 2wt%, the impact strength of nano-MgO/HDPE composite is 14% higher than that of pure HDPE. When the content of nano-MgO is 4wt%, the flexural strength of nano-MgO/HDPE composite is 18% higher than that of pure HDPE. The nano-MgO, which evenly distributed in nano-MgO/HDPE composites, promotes the crystallization of HDPE. 陕西省教育厅项目(14JK1162); 陕西省科学研究项目(2014K08-18)
[1] | 陈丽, 周志宇, 石俊学, 等. 国内外聚乙烯生产和市场现状[J]. 弹性体, 2014, 24(3): 80-83. CHEN L, ZHOU Z Y, SHI J X, et al. Production and market status of polyethylene at home and abroad[J]. China Elastomerics, 2014, 24(3): 80-83 (in Chinese). |
[2] | 徐素兰, 王涛. 国内高密度聚乙烯生产现状及市场分析[J]. 齐鲁石油化工, 2013, 41(2): 151-155. XU S L, WANG T. Status analysis on domestic HDPE units production and market[J]. Qilu Petrochemical Technology, 2013, 41(2): 151-155 (in Chinese). |
[3] | 何春霞, 顾红艳. 聚合物/无机纳米粒子复合材料的研究进展[J]. 合成树脂及塑料, 2007, 24(2): 69-77. HE C X, GU H Y. Progress in research of polymer composites filled with inorganic nano particles[J]. China Synthetic Resin and Plastics, 2007, 24(2): 69-77 (in Chinese). |
[4] | HEO J N, KIM W S, JEONG T W, et al. Effect of MgO film thickness on secondary electron emission from MgO-coated carbon nanotubes[J]. Physica B: Condensed Matter, 2002, 323(1): 174-176 (in Chinese). |
[5] | 李强, 王麟生, 王海霞, 等. 纳米氧化镁的制备及其紫外屏蔽性能[J]. 应用化学, 2006, 23(10): 1145-1149. LI Q, WANG L S, WANG H X, et al. Preparation of nanosized magnesium oxide and its UV-shielding capacity[J]. Chinese Journal of Applied Chemistry, 2006, 23(10): 1145-1149 (in Chinese). |
[6] | 巫晓鑫, 李国林, 吴水珠, 等. 纳米氧化镁与磷酸酯协效阻燃聚对苯二甲酸丁二醇酯的研究[J]. 塑料工业, 2011, 39(9): 93-96. WU X X, LI G L, WU S Z, et al. Synergetic fire retardant effect of nano-MgO and phosphate ester for PBT[J]. China Plastics Industry, 2011, 39(9): 93-96 (in Chinese). |
[7] | 全国塑料标准化技术委员会. 塑料弯曲性能的测定: GB/T 9341-2008[S]. 北京: 中国标准出版社, 2008. China National Technical Committee of Standardization for Plastics. Plastics-Determination of flexural properties: GB/T 9341-2008[S]. Beijing: Standards Press of China, 2008 (in Chinese). |
[8] | 全国塑料标准化技术委员会. 塑料简支梁冲击性能的测定: GB/T 1043-2008[S]. 北京: 中国标准出版社, 2008. China National Technical Committee of Standardization for Plastics. Plastics-Determination of charpy impact strength: GB/T 1043-2008[S]. Beijing: Standards Press of China, 2008 (in Chinese). |
[9] | 李传峰, 钟顺和. 溶胶凝胶法合成聚酰亚胺二氧化钛杂化膜[J]. 高分子学报, 2002(3): 326-330. LI C F, ZHONG S H. Polyimide-titania hybrid membrane prepared by the sol-gel progress[J]. Acta Polymeria Sinica, 2002(3): 326-330 (in Chinese). |
[10] | BOGGESS R K, TAYLOR L T. Characterization of cobalt-modified polyimides[J]. Journal of Polymer Science Part A Polymer Chemistry, 1987, 25(2): 685-702. |
[11] | 徐国永, 王平华. 纳米技术增韧改性聚氯乙烯的研究进展[J]. 塑料科技, 2004, 163(5): 48-52. XU G Y, WANG P H. Development of study on toughening-modified PVC through nano-technologies[J]. Plastics Science and Technology, 2004, 163(5): 48-52 (in Chinese). |
[12] | XIE Y C, YU D M, KONG J, et al. Study on morphology, crystallization behaviors of highly filledmaleated polyethylene-layered silicate nanocomposites[J]. Journal of Applied Polymer Science, 2006, 100(5): 4004-4011. |
[13] | 朱友良, 裴建云. 无机纳米粒子填充改性聚四氟乙烯复合材料的研究[J]. 塑料工业, 2005, 33(5): 8-11. ZHU Y L, PEI J Y. Study on PTFE composite modified by inorganic nano-meter material[J]. China Plastics Industry, 2005, 33(5): 8-11 (in Chinese). |
[14] | 曹秀香, 张晶, 王亮, 等. 改性纳米MgO/PLLA复合薄膜的制备及性能[J]. 复合材料学报, 2014, 31(6): 1452-1456. CAO X X, ZHANG J, WANG L, et al. Preparation and properties of modified MgO nanoparticles/PLLA composite films[J]. Acta Materiae Compositae Sinica, 2014, 31(6): 1452-1456 (in Chinese). |
[15] | 叶林, 刘晓莹, 夏昌茂, 等. 氧化镁对聚甲醛热稳定作用和成核作用研究[J]. 中国塑料, 2004, 18(4): 86-89. YE L, LIU X Y, XIA C M, et al. Effect of MgO on thermal stability and nucleation of POM[J]. China Plastics, 2004, 18(4): 86-89 (in Chinese). |
[16] | 全国塑料标准化技术委员会. 塑料拉伸性能的测定: GB/T 1040-2006[S]. 北京: 中国标准出版社, 2006. China National Technical Committee of Standardization for Plastics. Plastics-Determination of tensile properties: GB/T 1040-2006[S]. Beijing: Standards Press of China, 2006 (in Chinese). |
[17] | NOACK V, EYCHMULLER A. Annealing of nanometer-sized zinc oxide particles[J]. Chemistry of Materials, 2002, 14(3): 1411-1417. |
[18] | TIAN J H, WEI Y, ZHOU C X. Crystallization behaviors of linear and long chain branched polypropylene[J]. Journal of Applied Polymer Science, 2007, 104(6): 3592-3600. |
[19] | MORAWIEC J, PAWLAK A, SLOUF M, et al. Preparationand properties of compatibilized LDPE/organo-modified montmorillonite nanocomposites[J]. European Polymer Journal, 2005, 41(5): 1115-1122. |
[20] | WEI L M, TANG T, HUANG B T. Synthesisand characterization of polyethylene/clay-silica nano-composites: A montmorillonite/silica-hybrid-supported catalyst and in situ polymerization[J]. Journal of Polymer Science Part A Polymer Chemistry, 2004, 42(4): 941-949. |
[21] | AJIT R, KASINATH N, DEBORA F, et al. Maleated and non-maleated polyethylene-montmori-llonite layered silicate blown films: Creep, dispersionand crystallinity[J]. Polymer, 2005, 46(8): 7323-7333. |