全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2018 

TiB2/Cu复合材料的电弧侵蚀行为
Arc erosion behavior of TiB2/Cu composites

DOI: 10.13801/j.cnki.fhclxb.20170531.003

Keywords: TiB2/Cu,复合材料,放电等离子烧结,电弧侵蚀,燃弧时间,材料转移
TiB2/Cu
,composites,spark plasma sintering,arc erosion,arc duration,material transfer

Full-Text   Cite this paper   Add to My Lib

Abstract:

采用放电等离子烧结法(SPS)制备TiB2质量分数为1wt%~5wt%的TiB2/Cu复合材料,测试其导电率和硬度。当TiB2质量分数由0增至5wt%时,复合材料的导电率由96.9%(International Annealed Copper Standard,IACS)降至65.1%(IACS),布氏硬度由42.8增至65.2。对所制备的不同TiB2质量分数的TiB2/Cu复合材料在直流24 V、不同电流条件下进行电接触实验,探究TiB2添加量和电流对TiB2/Cu复合材料耐电弧侵蚀性能的影响。结果表明,TiB2/Cu复合材料的平均燃弧时间、平均燃弧能量和材料损耗量随着电流的增加而增加,TiB2/Cu复合材料的阴极损耗量高于阳极,整体上TiB2/Cu复合材料由阴极向阳极转移。在24 V和25 A条件下,不同TiB2质量分数的TiB2/Cu复合材料的燃弧时间和燃弧能量随操作次数增加不断波动,整体上呈逐渐增加的趋势,3wt% TiB2/Cu复合材料的稳定性最高,平均燃弧时间和燃弧能量最低。随着TiB2质量分数的增加,TiB2/Cu复合材料损耗量降低,表面蚀坑变浅。 The TiB2/Cu composites with TiB2 mass fraction of 1wt%-5wt% were prepared by spark plasma sintering (SPS), and the electrical conductivity and hardness were tested. The electrical conductivity of TiB2/Cu composites decreases from 96.9% (International Annealed Copper Standard, IACS) to 65.1%(IACS) with TiB2 mass fraction increasing from 0 to 5wt%, while the Brinell hardness increases from 42.8 to 65.2. To discuss the effect of TiB2 content and current on TiB2/Cu composites arc erosion, the electrical contact tests were performed at 24 V and different direct current for TiB2/Cu composites with the different TiB2 mass fractions. For TiB2/Cu composites with different TiB2 mass fraction, the average arc duration, average arc energy and mass loss increase with the increase of current. The cathode of TiB2/Cu composites mass loss more than that of the anode. In general, the TiB2/Cu composites are transferred from cathode to anode. At 24 V and 25 A, the arc duration and arc energy of TiB2/Cu composites with different TiB2 mass fractions are fluctuant with the increase of operation times. On the whole, it shows a tendency to increase gradually. The 3wt% TiB2/Cu composite has higher stability, the average arc duration and average arc energy are lower than the others. With the increase of mass fraction of TiB2, TiB2/Cu composites present less mass loss and shallower arc erosion pits. 国家自然科学基金(U1502274;51605146);广东省金属强韧化技术与应用重点实验室(广东省材料与加工研究所)开放课题资助项目(GKL201601)

References

[1]  思芳, 王俊勃, 刘松涛, 等. Ag-SnO2触头材料制备工艺的研究现状与发展趋势[J]. 电子元件与材料, 2015, 34(9):31-34. SI F, WANG J B, LIU S T, et al. Preparation process research status and development trend of Ag-SnO2 electrical contact materials[J]. Electronic Components and Materials, 2015, 34(9):31-34(in Chinese).
[2]  杨志强, 刘勇, 田保红, 等. TiC/Cu-Al2O3复合材料动态再结晶临界条件[J]. 复合材料学报, 2014, 31(4):963-969. YANG Z Q, LIU Y, TIAN B H, et al. Critical conditions of dynamic recrystallization of TiC/Cu-Al2O3 composites[J]. Acta Materiae Compositae Sinica, 2014, 31(4):963-969(in Chinese).
[3]  SWINGLER J, SUMPTION A. Arc erosion of AgSnO2 electrical contacts at different stages of a break operation[J]. Rare Metals, 2010, 29(3):248-254.
[4]  HAUNER F, JEANNOT D, MCNEILLY K, et al. Advanced AgSnO2 contact materials for the replacement of AgCdO in high current contactors[C]//Proceedings of the 56th IEEE Holm Conference on Electrical Contacts. Chicago:IEEE, 2000:225-230.
[5]  MUTZEL T, NIEDERREUTHER R. Development of contact material solutions for low voltage circuit breaker applications (2)[C]//Proceedings of the 57th IEEE Holm Conference on Electrical Contacts. Minneapolis:IEEE, 2011:1-6.
[6]  柏小平, 林万焕, 张明江. 低压电器用电触头材料[J]. 电工材料, 2007(3):12-16. BAI X P, LIN W H, ZHANG M J. Cotact materials for low voltage electric apparatus[J]. Electrical Engineering Materials, 2007(3):12-16(in Chinese).
[7]  OMER G, ERTAN E. The investigation of contact performance of oxide reinforced copper composite via mechanical alloying[J]. Journal of Materials Processing Technology, 2009, 209(3):1286-1290.
[8]  邵文柱, 甄良, 崔玉胜, 等. 铜-金刚石电接触复合材料的导电性[J]. 电工材料, 2002(2):10-12. SHAO W Z, ZHEN L, CUI Y S, et al. A study on conductivity of copper-diamond electrical contact composite materials[J]. Electrical Engineering Materials, 2002(2):10-12(in Chinese).
[9]  韩杰才, 洪长青, 张幸红, 等. TiB2-Cu复合材料燃烧合成与二次致密化行为[J]. 复合材料学报, 2004, 21(5):28-34. HAN J C, HONG C Q, ZHANG X H, et al. Combustion synthesis and two-time densification of TiB2-Cu composites[J]. Acta Materiae Compositae Sinica, 2004, 21(5):28-34(in Chinese).
[10]  李桂景, 王献辉, 邹军涛, 等. AgTiB2 复合材料电弧侵蚀行为研究[J]. 贵金属, 2011, 32(3):36-41. LI G J, WANG X H, ZOU J T, et al. Investigation on arc erosion behavior of AgTiB2 composite[J]. Precious Metals, 2011, 32(3):36-41(in Chinese).
[11]  郭迎春, 耿永红, 陈松, 等. 电触点直流电侵蚀研究[J]. 稀有金属材料与工程, 2007, 36(s3):264-268. GUO Y C, GENG Y H, CHEN S, et al. DC electric erosion of electric contacts[J]. Rare Metal Materials and Engineering, 2007, 36(s3):264-268(in Chinese).
[12]  WANG X H, YANG H, CHEN M, et al. Fabrication and arc erosion behaviors of Ag-TiB2 contact materials[J]. Powder Technology, 2014, 256(2):20-24.
[13]  刘利, 张金咏, 傅正义. TiB2-Cu体系的自蔓延高温合成及致密化[J]. 复合材料学报, 2005, 22(2):98-102. LIU L, ZHANG J Y, FU Z Y. SHS and compaction of titanium diboride-Cu system composites[J]. Acta Materiae Compositae Sinica, 2005, 22(2):98-102(in Chinese).
[14]  李震彪, 徐金玲, 黄良, 等. 电磁继电器触点动熔焊机理分析[J]. 低压电器, 2007(5):1-3, 28. LI Z B, XU J L, HUANG L, et al. Mechanism analysis on dynamic welding of electromagnetic relay contacts[J]. Low Voltage Apparatus, 2007(5):1-3, 28(in Chinese).
[15]  任维佳, 王献辉, 张苗. 不同SnO2含量的Ag-SnO2触头材料电弧侵蚀行为[J]. 稀有金属材料与工程, 2016, 45(8):2075-2079. REN W J, WANG X H, ZHANG M, et al. Arc erosion behavior of Ag-SnO2 contact materials with different SnO2 contents[J]. Rare Metal Materials and Engineering, 2016, 45(8):2075-2079(in Chinese).
[16]  CHEN Z K, SAWA K. Particle sput-tering and deposition mechanism for material transfer in breaking arcs[J]. Journal of Applied Physics, 1994, 76(6):3326-3331.
[17]  CHEN Z K, SAWA K. Effect of arc behavior on material transfer:A review[J]. IEEE Transaction on Components, Packaging and Manufacturing Technology-Part A, 1998, 21(2):310-322.
[18]  BIYIK S, ARSLAN F, AYDIN M. Arc-erosion behavior of boric oxide-reinforced silver-based electrical contact materials produced by mechanical alloying[J]. Journal of Electronic Materials, 2015, 44(1):457-466.
[19]  郭永利, 李冬梅, 李海燕, 等. 低压电器用铜基触头材料的研究进展[J]. 电工材料, 2011(3):10-13. GUO Y L, LI D M, LI H Y, et al. Progress in Cu-based contact materials of low voltage apparatus[J]. Electrical Engineering Materials, 2011(3):10-13(in Chinese).
[20]  韩波, 史庆南, 谢明, 等. 直流条件下W-15wt%Cu电接触材料燃弧特性研究[J]. 稀有金属材料与工程, 2012, 41(6):994-997. HAN B, SHI Q N, XIE M, et al. Arc erosion characteristics of W-15wt%Cu electric contact materials under DC condition[J]. Rare Metal Materials and Engineering, 2012, 41(6):994-997(in Chinese).

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133