|
- 2018
电气石颗粒/聚苯硫醚针刺毡复合过滤材料的过滤性能
|
Abstract:
为提高工业用过滤材料对细颗粒物的捕集效率,以袋式除尘用聚苯硫醚(PPS)针刺毡为基材,聚氨酯热熔胶膜为黏合层,通过溶液沉淀法将具有自发极化特性的电气石(TM)颗粒覆于基材表面,经热压处理制备了含不同纯度、不同含量、不同颗粒粒度的TM颗粒/PPS针刺毡复合过滤材料;利用SEM研究了TM对微细粒子的吸附情况,利用滤料性能测试装置研究了TM颗粒/PPS针刺毡的过滤性能,结果表明:附着TM颗粒后,TM颗粒/PPS针刺毡对亚微米粉尘过滤效率明显提高,TM纯度越高效果越好,纯度为87.16%时,滤料对0.3~1 μm粒子过滤效率提高幅度≥13.35%;最优附着浓度为5 mg·cm-2时,用于综合评价滤料过滤效率与阻力的滤料品质因数QF值最高;TM颗粒粒径越小,过滤效率提升效果越明显,TM颗粒粒径18~38 μm时,对0.3~1 μm粒子过滤效率提高幅度≥7.25%。TM颗粒/PPS针刺毡复合滤料较传统针刺毡滤料过滤性能明显增强。 In order to enhance the industrial filter's filtration efficiency for fine particle, baghouse polyphenylene sulfide(PPS) needle filter as the base material, polyurethane hot melt film as the adhesive layer, tourmaline(TM) particles which have spontaneous polarization characteristic were homogeneous deposited on the material surface by the method of direct precipitation from water solution, TM particles/PPS needle composite filter with different TM purity, contents and particle sizes were prepared by heat treating. SEM was used to investigate the adsorption effect of TM for fine particles, the filter media testing platform was used to evaluate the filtration ability of composite filter. The results show that the filtration efficiency of TM particles/PPS needle composite filter for the submicron particle is improved obviously after adding TM, and the filtration efficiency improves with the increase of TM purity. When the TM purity is 87.16%, the efficiency of the composite filter for 0.3-1 μm particles increases ≥ 13.35%. TM particles/PPS needle composite filter with the optimal concentration of 5 mg·cm-2 has the highest quality factor(QF)which is used to comprehensive assess efficiency and pressure drop. The filtration efficiency increases with the TM size decrease, and the filtration efficiency of TM particles/PPS needle filter for 0.3-1 μm particles enhance ≥ 7.25% when the TM size is 18-38 μm. The filtration performance of TM particles/PPS needle composite filter enhances obviously than the traditional needle filter. 国家十三五重大专项(2016YFC0801704;2016YFC0203701;2016YFC0801605);十二五科技支撑项目(2015BAK40B00)
[1] | 柳静献, 常德强, 毛宁, 等. 典型滤料对PM1.0/PM2.5/PM10细颗粒物捕集性能的研究[J]. 中国环保产业, 2013(6):22-25. LIU J X, CHANG D Q, MAO N, et al. Study of typical filter materials on collecting capability of PM1.0/PM2.5/PM10 granule[J]. China Environmental Protection Industry, 2013(6):22-25(in Chinese). |
[2] | 夏钟福. 驻极体[M]. 北京:科学出版社, 2001. XIA Z F. Electret[M]. Beijing:Science Press, 2001(in Chinese). |
[3] | SCHWODIAUER R, GOGONEA S B, BAUER S, et al. Charge stability of pulsed-laser deposited polytetrafluoroethylene film electrets[J]. Applied Physics Letters, 1998, 73(20):2941-2943. |
[4] | KANG P K, SHAH D O. Filtration of nanoparticles with dimethyl dioctadecylammonium bromide treated microporous polypropylene filters[J]. Langmuir, 1997, 13(6):1820-1826. |
[5] | 汤云晖. 电气石的表面吸附与电极反应研究[D]. 北京:中国地质大学, 2002. TANG Y H. Tourmaline's surface absorption and its electrode reaction research[D]. Beijing:China University of Geosciences, 2002(in Chinese). |
[6] | 吴瑞华, 汤云晖, 张晓辉. 电气石的电场效应及其在环境领域的应用前景[J]. 岩石矿物学杂志, 2001, 20(4):474-476. WU R H, TANG Y H, ZHANG X H. The electrostatic field effect of tourmaline particles and the prospect of its application to environmental protection field[J]. Acta Petrologica et Mineralogica, 2001, 20(4):474-476(in Chinese). |
[7] | 熊晶晶, 李可心, 黄黎明, 等. 介孔电气石/TiO2复合材料的制备及其模拟太阳光光催化性能[J]. 复合材料学报, 2014, 31(6):1481-1489. XIONG J J, LI K X, HUANG L M, et al. Preparation of mesoporous tourmaline/TiO2 composites and their simulated sunlight photocatalytic activity[J]. Acta Materiae Compositae Sinica, 2014, 31(6):1481-1489(in Chinese). |
[8] | LEONARD D T, MICHAEL T G, RUELO A A, et al. Antibacterial and superhydrophilicelectrospun polyurethane nanocomposite fibers containing tourmaline nanoparticles[J]. Chemical Engineering Journal, 2012, 197(14):41-48. |
[9] | YU B, HAN J, SUN H, et al. The preparation and property of poly(lactic acid)/tourmaline blends and meltblown nonwoven[J]. Polymer Composites, 2015, 36(2):264-271. |
[10] | 钟宏杰. 驻极体织物[J]. 天津工业大学学报, 2002, 21(2):76-78. ZHONG H J. Electret fabrics[J]. Journal of Tianjin Polytechnic University, 2002, 21(2):76-78(in Chinese). |
[11] | 康卫民, 程博闻, 焦晓宁, 等. 驻极体非织造布的研究进展[J]. 产业用纺织品, 2005, 23(2):1-5. KANG W M, CHENG B W, JIAO X N, et al. The recent development studying on electret nonwovens[J]. Technical Textiles, 2005, 23(2):1-5(in Chinese). |
[12] | 赵凯, 肖建刚, 李俊峰, 等. 电气石/壳聚糖复合纤维的表征及细胞相容性[J]. 复合材料学报, 2013, 30(6):101-107. ZHAO K, XIAO J G, LI J F, et al. Characterization and cytocompatibility of tourmaline/chitosan composite filter[J]. Acta Materiae Compositae Sinica, 2013, 30(6):101-107(in Chinese). |
[13] | BO?ENA ?, EDMUND M. Electret properties of polypropylene fabrics[J]. Journal of Electrostatics, 2001, 51(1):232-238. |
[14] | JI J H, BAE G N, KANG S H, et al. Effect of particle loading on the collection performance of an electret cabin air filter for submicron aerosols[J]. Journal of Aerosol Science, 2003, 34(11):1493-1504. |
[15] | NIFUKU M, ZHOU Y, KISIEL A, et al. Charging characteristics for electret filter materials[J]. Journal of Electrostatics, 2001, 51-52:200-205. |
[16] | TSAI P P, GIBSON H S, GIBSON P. Different electrostatic methods for making electret filters[J]. Journal of Electrostatics, 2002, 54(3):333-341. |
[17] | 蔡诚, 唐国翌, 宋国林, 等. 纳米SiO2驻极体/聚乳酸复合熔喷非织造材料的制备及性能[J]. 复合材料学报, 2017, 34(3):486-493. CAI C, TANG G Y, SONG G L, et al. Preparation and properties of nano-SiO2 electret/PLA composite meltblown nonwovens[J]. Acta Materiae Compositae Sinica, 2017, 34(3):486-493(in Chinese). |
[18] | YANG S, LEE G M. Electrostatic enhancement of collection efficiency of the fibrous filter pretreated with ionic surfactants[J]. Journal of the Air & Waste Management Association, 2005, 55(5):594-603. |
[19] | 冀志江. 电气石的自发极化及应用基础[D]. 北京:中国建筑材料科学研究院, 2003. JI Z J. Studies on the spontaneous polarity of tourmaline and its applied foundation[D]. Beijing:China Building Materlals Academy, 2003(in Chinese). |
[20] | 胡应模, 陈旭波, 汤明茹. 电气石功能复合材料研究进展及前景展望[J]. 地学前缘, 2014, 21(5):331-337. HU Y M, CHEN X B, TANG M R. Research development and prospects of functional tourmaline composites[J]. Earth Science Frontiers, 2014, 21(5):331-337(in Chinese). |
[21] | WANG C S. Electrostatic forces in fibrous filters:A review[J]. Powder Technology, 2001, 118(1-2):166-170. |