|
- 2018
碳纤维-氧化石墨烯/环氧树脂复合材料的制备及表征
|
Abstract:
采用改进的Hummers法制备了五种具有不同氧化程度的氧化石墨烯(GO)。借助元素分析、X射线光电子能谱及FTIR红外光谱测试对所制备GO的组成及结构衍变进行了表征。利用光学显微镜对不同GO在固化剂异佛尔酮二胺(IPDA)中的分散状态进行观察,并将分散效果最佳的GO试样用于改性碳纤维/环氧树脂(CF/EP)复合材料。结果表明,随着氧化剂用量及反应时间的增加,GO的氧化程度也随之增加。在氧化程度较低时,GO表面官能团主要以羰基、羧基和酚羟基为主。随着氧化程度的不断提高,GO表面官能团主要为醚、环氧和醇羟基结构。GO在IPDA中的分散状态与其氧化程度密切相关,氧化程度最低和最高的GO均出现明显的聚集现象。另外,GO表面在分散过程中可被IPDA化学改性。在EP基体中加入分散效果最佳的GO(0.2wt%)后,与CF/EP复合材料相比,CF-GO/EP复合材料的弯曲强度、层间剪切强度和Ⅱ型层间断裂韧性分别提高了14%、17%和14%。 Five graphene oxide (GO) with different oxidation degrees were prepared by the modified Hummers method. The composition and structure evolution of prepared GO were studied by elemental analysis, X-ray photo-electron spectroscopy and FTIR spectroscopy. The disperse states of different GO in the epoxy hardener (isophorone diamine, IPDA) were observed by an optical microscope. The GO sample which showed the best dispersibility was used to modify carbon fiber/epoxy(CF/EP) composites. The results indicate that by increasing the quantity of oxidant and reaction time, the oxidation degrees of GO increase accordingly. At a low oxidation degree, the functional groups on GO surfaces mainly contain carboxyl, carbonyl and phenolic groups. As the oxidation degree increases, the ether, epoxy and aliphatic hydroxyl groups gradually become dominant on GO surfaces. The disperse state of GO in IPDA is closely associated with the oxidation degree of GO. Both GO with the low and high oxidation degrees show clear aggregation. In addition, the GO surfaces can be chemically functionalized by IPDA during the dispersing process. Compared with the control sample with the unmodified EP matrix, the CF-GO/EP composites show about 14%, 17% and 14% increases in flexural strength, interlaminar shear strength and mode Ⅱ critical strain energy release rate (GⅡC), respectively, when the GO(0.2wt%) is added which has the best dispersibility is incorporated in the EP matrix. 中央高校基本科研业务费专项资金(17D128101)
[1] | 赵云峰. 先进纤维增强树脂基复合材料在航空航天工业中的应用[J]. 军民两用技术与品, 2010(1):4-6. ZHAO Y F. Advanced fiber reinforced resin matrix composites in aerospace applications[J]. Dual Use Technologies & Products, 2010(1):4-6(in Chinese). |
[2] | 沈威, 王小萍, 贾德民. 环氧树脂增韧改性技术研究进展[J]. 热固性树脂, 2010, 25(3):49-54. SHEN W, WANG X P, JIA D M. Research progress in toughening modification techniques of epoxy resin[J]. Thermosetting Resin, 2010, 25(3):49-54(in Chinese). |
[3] | 冯永国, 许伟, 王海龙. 碳纤维环氧树脂复合材料层间增韧研究进展[J]. 玻璃钢/复合材料, 2010(s1):184-186. FENG Y G, XU W, WANG H L. Studies on interlayer-toughened carbon fiber epoxy[J]. Glass Fiber Reinforced Plastic/Composite Materials, 2010(s1):184-186(in Chinese). |
[4] | 卫保娟, 肖潭, 李雄俊, 等. 石墨烯与多壁碳纳米管增强环氧树脂复合材料的制备及性能[J]. 复合材料学报, 2012, 29(5):53-60. WEI B J, XIAO T, LI X J, et al. Preparation and properties of graphene and MWCNTs reinforced epoxy resin composites[J]. Acta Materiae Compositae Sinica, 2012, 29(5):53-60(in Chinese). |
[5] | ASHRAFI B, GUAN J W, MIRJALILI V, et al. Enhancement of mechanical performance of epoxy/carbon fiber laminate composites using single-walled carbon nanotubes[J]. Composites Science and Technology, 2011, 71(13):1569-1578. |
[6] | WANG P N, HSIEH T H, CHIANG C L, et al. Effects of mechanical properties on graphene nanoplatelet and multiwalled carbon nanotube hybrids reinforced epoxy/carbon fiber composites[J]. Journal of Nanomaterials, 2015, 2015(7):838032. |
[7] | WANG X, JIN J, SONG M, et al. Effect of graphene oxide sheet size on the curing kinetics and thermal stability of epoxy resins[J]. Materials Research Express, 2016, 3(10):105303. |
[8] | POUR Z S, GHAEMY M. Polymer grafted graphene oxide:For improved dispersion in epoxy resin and enhancement of mechanical properties of nanocomposite[J]. Composites Science and Technology, 2016, 136:145-157. |
[9] | ASTM International. Standard test method for flexural properties of polymer matrix composite materials:ASTM D7264M-07[S]. West Conshohocken:ASTM International, 2007. |
[10] | ASTM International. Standard test method for short-beam strength of polymer matrix composite materials and their laminates:ASTM D2344M-16[S]. West Conshohocken:ASTM International, 2016. |
[11] | 李建国. 碳纤维复合材料孔隙率及其检测方法[J]. 纤维复合材料, 2012, 20(4):20-23. LI J G. Carbon fiber composite voids and testing methods[J]. Fiber Composites, 2012, 20(4):20-23(in Chinese). |
[12] | BORTZ D R, HERAS E G, MARTINGULLON I. Impressive fatigue life and fracture toughness improvements in graphene oxide/epoxy composites[J]. Macromolecules, 2012, 45(1):238-245. |
[13] | 张骏华, 盛祖铭, 孙继同. 复合材料结构设计指南[M]. 北京:北京宇航出版社有限公司, 1999. ZHANG J H, SHENG Z M, SUN J T. Design guide of composites constructure[M]. Beijing:Beijing Yuhang Publishing Company, 1999(in Chinese). |
[14] | 高科技纤维与应用. 首款量产碳纤维复合材料汽车面世[J]. 高科技纤维与应用, 2013(5):73. High-Tech Fibers and Applications. The first car of carbon fiber composite material for mass production[J]. High-Tech Fibers and Applications, 2013(5):73(in Chinese). |
[15] | TORRES D, PINILLA J L, MOLINER R, et al. On the oxidation degree of few-layer graphene oxide sheets obtained from chemically oxidized multiwall carbon nanotubes[J]. Carbon, 2015, 81(1):405-417. |
[16] | HAN X, ZHAO Y, SUN J M, et al. Effect of graphene oxide addition on the interlaminar shear property of carbon fiber reinforced epoxy composites[J]. New Carbon Materials, 2017, 32(1):48-55. |
[17] | ZHU Y, BAKIS C E, ADAIR J H. Effects of carbon nanofiller functionalization and distribution on interlaminar fracture toughness of multi-scale reinforced polymer composites[J]. Carbon, 2012, 50(3):1316-1331. |
[18] | 张新元, 何碧霞, 李建利, 等. 高性能碳纤维的性能及其应用[J]. 棉纺织技术, 2011, 39(4):269-272. ZHANG X Y, HE B X, LI J L, et al. Property and application of high-performance carbon fiber[J]. Totton Textile Technology, 2011, 39(4):269-272(in Chinese). |
[19] | 马立敏, 张嘉振, 岳广全, 等. 复合材料在新一代大型民用飞机中的应用[J]. 复合材料学报, 2015, 32(2):317-322. MA L M, ZHANG J Z, YUE G Q, et al. Composites in new generation of large civil aircraft[J]. Acta Materiae Compositae Sinica, 2015, 32(2):317-322(in Chinese). |
[20] | KAFI A, HUSON M, CREIGHTON C, et al. Effect of surfaces functionality of PAN-based carbon fibres on the mechanical performance of carbon/epoxy composites[J]. Composites Science and Technology, 2014, 94(4):89-95. |
[21] | 董大龙, 周翔, 汪海, 等. 分层对复合材料机械连接结构承载能力的影响[J]. 复合材料学报, 2017, 34(5):1-9. DONG D L, ZHOU X, WANG H, et al. The bearing capacity of composite mechanical joint with hole delamination[J]. Acta Materiae Compositae Sinica, 2017, 34(5):1-9(in Chinese). |
[22] | 胡少坤. 环氧树脂增韧改性方法研究进展[J]. 粘接, 2008, 29(6):34-37. HU S K. Research progress in modification means to improve epoxy resin toughness[J]. Adhesion in China, 2008, 29(6):34-37(in Chinese). |
[23] | 沈小军, 孟令轩, 付绍云, 等. 石墨烯-多壁碳纳米管协同增强环氧树脂复合材料的低温力学性能[J]. 复合材料学报, 2015, 32(1):21-26. SHEN X J, SHEN L X, FU S Y, et al. Cryogenic mechanical properties of epoxy composites synergistically reinforced by graphene-multi-walled carbon nanotubes[J]. Acta Materiae Compositae Sinica, 2015, 32(1):21-26(in Chinese). |
[24] | GONG L X, PEI Y B, HAN Q Y, et al. Polymer grafted reduced graphene oxide sheets for improving stress transfer in polymer composites[J]. Composites Science and Technology, 2016, 134:144-152. |
[25] | KANG W S, RHEE K Y, PARK S J. Thermal impact and toughness behaviors of expanded graphite/graphite oxide filled epoxy composites[J]. Composites Part B:Engineering, 2016, 94:238-244. |
[26] | LI W, SHANG T, YANG W, et al. Effectively exerting the reinforcement of dopamine reduced graphene oxide on epoxy-based composites via strengthened interfacial bonding[J]. ACS Applied Material Interfaces, 2016, 8(20):13037-13050. |
[27] | HUMMERS W S, OFFEMAN R E. Preparation of graphitic oxide[J]. Journal of the American Chemical Society, 1958, 80(6):1339. |
[28] | ASTM International. Standard test method for determination of the mode Ⅱ interlaminar fracture toughness of unidirectional fiber-reinforced polymer matrix composites:ASTM D7905M-14[S]. West Conshohocken:ASTM International, 2014. |
[29] | 陈吉平, 高龙飞, 苏佳智, 等. VARI工艺中纤维体积含量的影响因素及控制技术研究[J]. 玻璃钢/复合材料, 2016(3):78-82. CHEN J P, GAO L F, SU J Z, et al. Influence and control of parameters on the composite fiber volume fraction by VARI process[J]. Fiber Reinforced Plastics/Composites, 2016(3):78-82(in Chinese). |
[30] | 范雨娇, 顾轶卓, 邓火英, 等. 碳纳米管加入方式对碳纤维/环氧树脂复合材料层间性能的影响[J]. 复合材料学报, 2015, 32(2):332-340. FAN Y J, GU Y Z, DENG H Y, et al. Effect of adding method of carbon nanotube on interlaminar property of carbon fiber/epoxy composites[J]. Acta Materiae Compositae Sinica, 2015, 32(2):332-340(in Chinese). |
[31] | 倪新亮, 金凡亚, 沈丽, 等. 等离子体处理碳纤维/树脂复合材料[J]. 复合材料学报, 2015, 32(3):721-727. NI X L, JIN F Y, SHEN L, et al. Carbon fiber/resin composites treated by plasma[J]. Acta Materiae Compositae Sinica, 2015, 32(3):721-727(in Chinese). |
[32] | 宋盛菊, 杨法杰, 褚庭亮, 等. 环氧树脂增韧方法及增韧剂的研究进展[J]. 中国印刷与包装究, 2013, 5(5):9-24. SONG S J, YANG F J, ZHU T L, et al. Research progress of epoxy resin toughing method and toughing agent[J]. China Printing and Packing Study, 2013, 5(5):9-24(in Chinese). |