|
- 2018
硅烷改性纳米TiO2-Zn-Al/水性环氧涂层的防腐性能
|
Abstract:
为实现纳米TiO2颗粒的均匀分散,首先对纳米TiO2进行硅烷改性,再通过溶液共混法制备出不同纳米TiO2添加量的硅烷改性纳米TiO2-Zn-Al/水性环氧复合涂层。研究了纳米TiO2与Zn-Al片层粉在涂层中的综合作用。利用XRD和FTIR分析涂层的物相组成和组织结构,SEM和EDS表征涂层表面的微观形貌和元素组成,采用极化曲线和电化学阻抗谱(EIS)研究涂层的耐腐蚀性能。EDS和FTIR表明,经改性的纳米TiO2均匀分散于涂层中,纳米TiO2与环氧树脂的枝联作用使涂层更加致密。EIS结果显示,由于Zn-Al片层粉与纳米TiO2的枝联和填充作用,使添加纳米TiO2的硅烷改性纳米TiO2-Zn-Al/水性环氧涂层腐蚀行为较未添加纳米TiO2时有所减缓。当纳米TiO2添加量增加到4wt%时,硅烷改性纳米TiO2-Zn-Al/水性环氧涂层的腐蚀电流密度为9.86×10-6 A/cm2,比未添加纳米TiO2的涂层高一个量级。 In order to achieve homo-disperse of nano TiO2, nano TiO2 was treated by the silane coupling agent and the Zn-Al/waterborne epoxy composited coatings containing silane modified nano TiO2 were prepared by incorporating different mass fraction of TiO2 nanoparticles in the epoxy resin and Zn-Al powders via solution blended process. The combination action of the nano TiO2 and Zn-Al flake powder in the coating was explored. The XRD and FTIR were used to analyze the phase composition and structure of the coating. The micro morphology and elementary composition of the coating surface were representated by the SEM and EDS. The corrosion resistance of coatings was investigated by polarization curves and electrochemical impedance spectroscopy(EIS) tests. EDS and FTIR results suggest that the modified nano TiO2 is symmetrical dispersion in the coating, the crosslinking reaction of nano TiO2 and epoxy resin makes the coating more pyknoticly. The EIS tests show that due to the filling effects of Zn-Al flake powder and nano TiO2, the corrosion behavior of the silane modified nano TiO2-Zn-Al/waterborne epoxy coatings is more slower than that of nano TiO2, when the content of nano TiO2 increases to 4wt%, the corrosion current density of the silane modified nano TiO2-Zn-Al/waterborne epoxy coatings is 9.86×10-6 A/cm2, the corrosion current density is higher one rank than none nano TiO2. 江苏省“六大人才高峰”第十二批高层次人才资助项目(YPC16005-PT);江苏高校优势学科建设工程资助项目;国家自然科学基金(5170010394)通信作者:姚正军,博士,教授,研究方向为金属及高分子材料E-mail:yaozj1921@126.com
[1] | EINAR B. Corrosion and protection[M]. London:Springer Verlag, 2004. |
[2] | ERDMENGER T, GUERRERO-SANCHEZ C, VITZ J, et al. Recent developments in the utilization of green solvents in polymer chemistry[J]. Chemical Society Reviews, 2010, 39(8):3317-3333. |
[3] | SHI H W, LIU F C, YANG L H, et al. Characterization of protective performance of epoxy reinforced with nanometer-sized TiO2 and SiO2[J]. Progress in Organic Coatings, 2008, 62(4):359-368. |
[4] | SHI X M, TUAN A N, SUO Z Y, et al. Effect of nanoparticles on the anticorrosion and mechanical properties of epoxy coating[J]. Surface & Coatings Technology, 2009, 204(3):237-245. |
[5] | BEHZADNASAB M, MIRABEDINI S M, KABIRI K, et al. Corrosion performance of epoxy coatings containing silane treated ZrO2 nanoparticles on mild steel in 3.5% NaCl solution[J]. Corrosion Science, 2011, 53(1):89-98. |
[6] | El-SAEED A M, El-FATTAH M A, DARDIR M M. Synthesis and characterization of titanium oxide nanotubes and its performance in epoxy nanocomposite coating[J]. Progress in Organic Coatings, 2015, 78:83-89. |
[7] | LORENZETTI M, PELLICER E, JORDI S, et al. Improvement to the corrosion resistance of Ti-based implants using hydrothermally synthesized nanostructured anatase coatings[J]. Materials, 2014, 7(1):180-194. |
[8] | ANAEE R A, GHABAN A M. Corrosion protection of steel using nano ceramic particles coating[M]. Iraq:Research Gate, 2015. |
[9] | EL-SAEED A M, EL-FATTAH M A, AZZAM A M. Synthesis of ZnO nanoparticles and studying its influence on the antimicrobial, anticorrosion and mechanical behavior of polyurethane composite for surface coating[J]. Dyes and Pigments, 2015, 121:282-289. |
[10] | 余宗学, 马瑜, 何毅, 等. TiO2-GO的制备及TiO2-GO/环氧树脂涂层的抗腐蚀性能[J]. 复合材料学报, 2015, 32(4):1017-1024. YU Z X, MA Y, HE Y, et al. Preparation of TiO2-GO and anti-corrosion performances of TiO2-GO/epoxy coatings[J]. Acta Materiae Compositae Sinica, 2015, 32(4):1017-1024(in Chinese). |
[11] | JI W G, HU J M, LIU L, et al. Improving the corrosion performance of epoxy coatings by chemical modification with silane monomers[J]. Surface & Coatings Technology, 2007, 201(8):4789-4795. |
[12] | 孙秀敏, 徐金光, 刘苏静, 等. 纳米TiO2的改性及其性能研究[J]. 化工新型材料, 2014, 42(3):130-133. SUN X M, XU J G, LIU S J, et al. Modification and properties of nano TiO2[J]. Chemical New Material, 2014, 42(3):130-133(in Chinese). |
[13] | 余口强, 司云森, 曾初升. 交流阻抗技术及其在腐蚀科学中的应用[J]. 化学工程师, 2005, 120(9):35-37. YU K Q, SI Y S, ZENG C S. Communication impedance technology and its application in corrosion science[J]. Chemical Engineer, 2005, 120(9):35-37(in Chinese). |
[14] | AHNIA F, BOUALEM D. Evaluation of aluminum coatings in simulated marine environment[J]. Surface & Coatings Technology, 2013, 220:232-236. |
[15] | HONG S, WU Y P, GAO W W, et al. Corrosion behavior of arc-sprayed Zn-Al coating in the presence of sulfate-reducing bacteria in seawate[J]. Materials Engineering and Performance, 2015, 24(11):4449-4455. |
[16] | 唐敏峰. F-51环氧树脂水性化改性的研究[D]. 西安:西北工业大学, 2004. TANG M F. Study on the waterborne modification of F-51 epoxy resin[D]. Xi'an:Northwest Polytechnic University, 2004(in Chinese). |
[17] | 范亚平, 任天斌, 黄艳霞, 等. 水性环氧树脂涂料及其固化机制的研究[J]. 涂料工业, 2006, 36(7):17-21. FAN Y P, REN T B, HUANG Y X, et al. Research on waterborne epoxy resin coatings and their curing mechanism[J]. Coatings Industry, 2006, 36(7):17-21(in Chinese). |
[18] | FEMANDO R H. Nanotechnology applications in coatings[M]. San Luis Obispo:American Chemical Society, 2009. |
[19] | 李林, 姚素薇. 纳米涂料的发展现状与未来[J]. 电镀与涂饰, 2004, 23(1):40-44. LI L, YAO S W. The development status and future of nano coatings[J]. Electroplating and Finishing, 2004, 23(1):40-44(in Chinese). |
[20] | ZHANG X Z, LI Y J. Effects of nano-sized titanium powder on the anti-corrosion property of epoxy coatings on steel[J]. Original Scientific Paper, 2014, 63(9-10):317-322. |
[21] | WANG N, FU W L, ZHANG J, et al. Corrosion performance of waterborne epoxy coatings containing polyethylenimine treated mesoporous-TiO2 nanoparticles on mild steel[J]. Progress in Organic Coatings, 2015, 89:114-122. |
[22] | 赵书彦, 陈军君, 刘福春, 等. 纳米石墨/聚氨酯复合涂层的制备与防护性能[J]. 复合材料学报, 2016, 33(9):1868-1878. ZHAO S Y, CHEN J J, LIU F C, et al. Preparation and anti-corrosion performances of nano-graphite/polyurethane composite coatings[J]. Acta Materiae Compositae Sinica, 2016, 33(9):1868-1878(in Chinese). |
[23] | 张亚利, 孙典亭, 郭国霖, 等. 电化学交流阻抗复数平面图和电容复数平面图上相似图形的等效电路变换规则[J]. 高等学校化学学报, 2000, 21(7):1086-1092. ZHANG Y L, SUN D T, GUO G L, et al. The rules of the equivalent circuit transformation of similar graphs on the complex surface of electrochemical communication impedance and the complex surface of capacitors[J]. Journal of Higher Learning Chemistry, 2000, 21(7):1086-1092(in Chinese). |