|
- 2018
甘蔗渣的改性方法对甘蔗渣/聚乳酸复合材料结构与性能的影响
|
Abstract:
采用碱处理、硅烷偶联剂及碱处理后再硅烷偶联剂等方法改性甘蔗渣(BF),将改性后的BF与聚乳酸(PLA)共混制备BF/PLA复合材料。采用TGA、FTIR和SEM分析研究BF/PLA复合材料的热稳定性;分别采用Flynn-Wall-Ozawa(FWO)法和Kissinger法研究BF/PLA复合材料的热分解动力学。结果表明,BF/PLA复合材料的热稳定与BF的结构及BF/PLA复合材料的界面相容性有关。碱处理使BF原纤化,降低BF的耐热性,不利于BF/PLA复合材料热稳定性及力学性能的提高;硅烷偶联剂改性可以改善BF与PLA的界面相容性,有助于提高BF/PLA复合材料的热稳定性。FWO法与Kissinger法计算得到的热分解活化能较一致,说明这两种方法都适合研究BF/PLA复合材料的热分解动力学。在所对比的BF/PLA复合体系中,硅烷偶联剂改性的BF/PLA复合材料热分解活化能最高、力学性能最佳,碱处理后再硅烷偶联剂改性的BF/PLA复合材料次之。 The measures in terms of alkali treatment, silane coupling agent modification and combination of alkali treatment and silane coupling agent modification were used to modify bagasse (BF). Various modified BF were blended with polylactic acid (PLA) to prepare BF/PLA composites. TGA, FTIR and SEM were used to study the thermal stability of BF/PLA composites. Flynn-Wall-Ozawa (FWO) method and Kissinger method were used to investigate the thermal decomposition kinetics of BF/PLA composites, respectively. The results show that the thermal stability of BF/PLA composites is associated with the structure of BF and the interfacial compatibility of BF/PLA composites. The alkali treatment makes BF fibrillated and reduces its heat resistance, as impedes the increasing of thermal stability and mechanical properties of BF/PLA composites. The silane coupling agent modification improves the interfacial compatibility between BF and PLA, resulting in the increasing of thermal stability of BF/PLA. In the compared BF/PLA composites, the silane coupling agent modification affords most contribution to the increasing of thermal degradation activation energy and mechanical properties of BF/PLA composites, while the combination of alkali treatment and silane coupling agent modification affords second contribution. 国家自然科学基金(51276044);广东省科技计划项目(2014A010105047);广州市科技计划项目(201707010367)
[1] | FARUK O, BLEDZKI A K, FINK H P, et al. Biocom-posites reinforced with natural fibers:2000-2010[J]. Progress in Polymer Science, 2012, 37(11):1552-1596. |
[2] | LEI Y, WU Q L, YAO F, et al. Preparation and properties of recycled HDPE/natural fiber composites[J]. Composites Part A:Applied Science and Manufacturing, 2007, 38(7):1664-1674. |
[3] | 朱凌波, 李新功, 杨凯, 等. 几种不同改性剂对稻草/丙烯腈-丁二烯-苯乙烯复合材料性能的影响[J]. 复合材料学报, 2018, 35(7):1791-1799.ZHU L B, LI X G, YANG K, et al. Performance enhancement of straw/acrylonitrile-butadiene-styrene composites by several different kinds of modifiers[J]. Acta Materiae Compositae Sinica, 2018, 35(7):1791-1799(in Chinese). |
[4] | KIM H S, CHOI S W, KIM S, et al. The effect of types of maleic anhydride-grafted polypropylene (MAPP) on the interfacial adhesion properties of bio-flour-filled polypropylene composites[J]. Composites Part A:Applied Science and Manufacturing, 2007, 38(6):1473-1482. |
[5] | 罗卫华, 袁彩霞, 王正良, 等. 聚乳酸接枝马来酸酐/丙烯酸丁酯共聚物的制备与性能[J]. 功能材料, 2015, 46(12):12025-12028. LUO W H, YUAN C X, WANG Z L, et al. Preparation and properties of maleic anhydride/butyl acrylate grafted poly(lactic acid) copolymer[J]. Journal of Functional Materials, 2015, 46(12):12025-12028(in Chinese). |
[6] | LI X, TABIL L G, PANIGRAHI S. Chemical treatments of natural fiber for use in natural fiber-reinforced composites:A review[J]. Journal of Polymers and the Environment, 2007, 15(1):25-33. |
[7] | XIE Y J, HILL C A S, XIAO Z F, et al. Silane coupling agents used for natural fiber/polymer composites:A review[J]. Composites Part A:Applied Science and Manufacturing, 2010, 41(7):806-819. |
[8] | KALIA S, KAITH B S, KAUR I. Pretreatments of natural fibers and their application as reinforcing material in polymer composites:A review[J]. Polymer Engineering & Science, 2009, 49(7):1253-1272. |
[9] | JOHN M J, ANANDJIWALA R D. Recent developments in chemical modification and characterization of natural fiber-reinforced composites[J]. Polymer Composites, 2008, 29(2):187-207. |
[10] | 中国国家标准化管理委员会. 塑料悬臂梁冲击强度的测定:GB/T 1843-2008[S]. 北京:中国标准出版社, 2008. Standardization Administration of the People's Republic of China. Plastics:Determination of izod impact strength:GB/T 1843-2008[S]. Beijing:China Standards Press, 2008(in Chinese). |
[11] | PICKERING K L, ARUAN E M G, LE T M. A review of recent developments in natural fibre composites and their mechanical performance[J]. Composites Part A:Applied Science and Manufacturing, 2016, 83:98-112. |
[12] | SUN Z Y, HAN H S, DAI G C. Mechanical properties of injection-molded natural fiber-reinforced polypropylene com-posites:Formulation and compounding processes[J]. Journal of Reinforced Plastics & Composites, 2010, 29(5):637-650. |
[13] | HUBER T, MUSSIG J. Fibre matrix adhesion of natural fibres cotton, flax andhemp in polymeric matrices analyzed with the single fibre fragmentation test[J]. Composite Interfaces, 2008, 15(2-3):335-349. |
[14] | FLYNN J H, WALL L A. A quick, direct method for the determination of activation energy from thermogravimetric data[J]. Journal of Polymer Science Part B:Polymer Letter, 1966, 4(5):323-328. |
[15] | WITKOWSKI A, STEC A A, HULL T R. Thermal decomposition of polymeric materials//SFPE handbook of fire protection engineering[M]. New York:Springer Press Inc., 2016. |
[16] | KISSINGER H E. Reaction kinetics in differential thermal analysis[J]. Analytical Chemistry, 1957, 29(11):1702-1706. |
[17] | ZHOU F, CHENG G, JIANG B. Effect of silane treatment on microstructure of sisal fibers[J]. Applied Surface Science, 2014, 292:806-812. |
[18] | VALADEZ G A, CERVANTES U J M, R OLAYO R, et al. Chemical modification of henequén fibers with an organosilane coupling agent[J]. Composites Part B:Engineering, 1999, 30(3):321-331. |
[19] | ABDELMOULEH M, BOUFI S, BELGACEM M N, et al. Modification of cellulosic fibres with functionalised silanes:Development of surface properties[J]. International Journal of Adhesion and Adhesives, 2004, 24(1):43-54. |
[20] | 胡建鹏, 郭明辉. 木质素磺酸铵对聚乳酸/木纤维可生物降解复合材料力学与热性能的影响[J]. 复合材料学报, 2015, 32(3):657-664. HU J P, GUO M H. Influence of ammonium lignosulphonate on mechanical and thermal properties of polylactic acid/wood fiber biodegradable composites[J]. Acta Materiae Compositae Sinica, 2015, 32(3):657-664(in Chinese). |
[21] | 中国国家标准化管理委员会. 塑料拉伸性能的测定:GB/T 1040.1-2006[S]. 北京:中国标准出版社, 2006. Standardization Administration of the People's Republic of China. Plastic:Determination of tensile properties:GB/T 1040.1-2006[S]. Beijing:China Standards Press, 2006(in Chinese). |
[22] | GURUNATHAN T, MOHANTY S, NAYAK S K. A review of the recent developments in biocomposites based on natural fibres and their application perspectives[J]. Com-posites Part A:Applied Science and Manufacturing, 2015, 77:1-25. |
[23] | MADHAVAN N K, NAIR N R, JOHN R P. An overview of the recent developments in polylactide (PLA) research[J]. Bioresource Technology, 2010, 101:8493-8501. |
[24] | RASAL R M, JANORKAR A V, HIRT D E. Poly(lactic acid) modifications[J]. Progress in Polymer Science, 2010, 35(3):338-356. |
[25] | 陈大凯, 李菁, 任杰. 天然纤维增强型聚乳酸复合材料的研究进展[J]. 塑料, 2010, 39(6):108-110. CHEN D K, LI J, REN J. Research progress of the natural fiber reinforced polylactic acid(PLA) composite[J]. Plastics, 2010, 39(6):108-110(in Chinese). |
[26] | CSIKOS A, FALUDI G, DOMJAN A, et al. Modification of interfacial adhesion with a functionalized polymer in PLA/wood composites[J]. European Polymer Journal, 2015, 68:592-600. |
[27] | 盛雨峰, 温变英, 李晓媛, 等. 蔗渣纤维表面处理方法对蔗渣纤维/聚乳酸复合材料力学性能的影响[J]. 复合材料学报, 2012, 29(6):60-65. SHENG Y F, WENG B Y, LI X Y, et al. Effect of surface treatment on the mechanical properties of BF/PLA composite[J]. Acta Materiae Compositae Sinica, 2012, 29(6):60-65(in Chinese). |