全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2017 

晶格反演法构建SiC/Mg界面对势及其验证
Interatomic pair potentials and their validation for SiC/Mg interface by lattice inversion method

DOI: 10.13801/j.cnki.fhclxb.20161115.003

Keywords: SiC/Mg界面,原子间作用对势,晶格反演法,从头计算,界面势验证
SiC/Mg interface
,interatomic pair potentials,lattice inversion method,ab initio calculation,interface potential validation

Full-Text   Cite this paper   Add to My Lib

Abstract:

通过分析SiC和Mg的晶体结构,构造了SiC与Mg的共格晶面。采用Chen-M?bius晶格反演法对SiC/Mg界面的原子对势进行了反演,分别推导了Si和Mg原子、C和Mg原子间作用势与界面结合能关系的解析表达式。在此基础上,从头计算了SiC/Mg界面的结合能曲线,结合反演公式得到了Si和Mg原子、C和Mg原子的对势函数,并对反演过程的自洽性进行了检验。此外,建立了其他6种不同的SiC/Mg界面构型,通过对比反演对势计算的界面结合能与从头计算的结果,对反演所得对势的可转移性进行了验证。结果表明:从头计算的界面结合能可以由反演对势精确地算出,整个反演过程和结果是自洽的,所得原子对势同样适用于其他界面构型,具有良好的可转移性。本文推导的反演公式同样适用于与SiC/Mg界面结构相似的其他界面原子对势的研究。 The coherent interface of Mg and SiC was established by analyzing their crystal structures. Interatomic pair potentials for SiC/Mg interfaces were inversed by Chen-M?bius lattice inversion method and analytical expre-ssions for Si-Mg and C-Mg pair potentials as a function of the SiC/Mg interfacial adhesive energy have been derived, respectively. On this basis, ab initio calculations of the adhesive energy for the SiC/Mg interface were carried out. Thus, the Si-Mg and C-Mg pair potentials were obtained by the inversion formula. In addition, a self-consistent check was conducted to validate the inversion process. Meanwhile, six other SiC/Mg interface models were built to validate the transferability of the inversed pair potentials by comparing adhesive energies predicted by the ab initio method with those calculated by the inversion method. The results show that the original ab initio adhesive energies can be precisely reproduced by the inversed potentials, indicating that the inversion method is self-consistent and the obtained potentials are of good transferability for some other interface models. The inversion formula deduced in this paper is also suitable for other interfaces similar to SiC/Mg interface structures. 国家自然科学基金(11272072;11672055)

References

[1]  GUPTA M, LAI M, SARAVANARANGANATHAN D. Synthesis, microstructure and properties characterization of disintegrated melt deposited Mg/SiC composites[J]. Journal of Material Science, 2000, 35(9): 2155-2165.
[2]  LAN J, YANG Y, LI X. Microstructure and microhardness of SiC nanoparticles reinforced magnesium composites fabricated by ultrasonic method[J]. Materials Science and Enginee-ring A, 2004, 386(1): 284-290.
[3]  PODDAR P, SRIVASTAVA V C, De P K, et al. Processing and mechanical properties of SiC reinforced cast magnesium matrix composites by stir casting process[J]. Materials Science and Engineering A, 2007, 460: 357-364.
[4]  NIE K B, WANG X J, HU X S, et al. Microstructure and mechanical properties of SiC nanoparticles reinforced magnesium matrix composites fabricated by ultrasonic vibration[J]. Materials Science and Engineering A, 2011, 528(15): 5278-5282.
[5]  THAKUR S K, DHINDAW B K. The influence of interfacial characteristics between SiCp and Mg/Al metal matrix on wear, coefficient of friction and microhardness[J]. Wear, 2001, 247(2): 191-201.
[6]  CHEN N X. Modified M?bius inverse formula and its applications in physics[J]. Physical Review Letters, 1990, 64: 1193-1195.
[7]  MACDONALD A H. Comment on special points for Brillouin-zone integrations[J]. Physical Review B, 1978, 18: 5897-5899.
[8]  FERKEL H, MORDIKE B L. Magnesium strengthened by SiC nanoparticles[J]. Materials Science and Engineering A, 2001, 298(1): 193-199.
[9]  MATIN A, SANIEE F F, ABEDI H R. Microstructure and mechanical properties of Mg/SiC and AZ80/SiC nano-composites fabricated through stir casting method[J]. Materials Science and Engineering A, 2015, 625: 81-88.
[10]  ZHENG M, WU K, YAO C, et al. Interfacial bond between SiCw and Mg in squeeze cast SiCw/Mg composites[J]. Materials Letters, 1999, 41(2): 57-62.
[11]  BRASZCZYNSKA K N, LITYNSKA L, ZYSKA A, et al. TEM analysis of the interfaces between the components in magnesium matrix composites reinforced with SiC particles[J]. Materials Chemistry and Physics, 2003, 81(2): 326-328.
[12]  MAURY H, JONNARD P, LE G K, et al. Thermal cycles, interface chemistry and optical performance of Mg/SiC multilayers[J]. European Physical Journal B, 2008, 64(2): 193-199.
[13]  SONG H Y, ZHA X W. Influence of nickel coating on the interfacial bonding characteristics of carbon nanotube-aluminum composites[J]. Computational Materials Science, 2010, 49(4): 899-903.
[14]  DANDEKAR C R, SHIN Y C. Molecular dynamics based cohesive zone law for describing Al-SiC interface mechanics[J]. Composites Part A: Applied Science and Manufacturing, 2011, 42(4): 355-363.
[15]  CAI J, HU X Y, CHEN N X. Multiple lattice inversion approach to interatomic potentials for compound semiconductors[J]. Journal of Physics and Chemistry of Solids, 2005, 66(7): 1256-1263.
[16]  LONG Y, CHEN N X, ZHANG W Q. Pair potentials for a metal-ceramic interface by inversion of adhesive energy[J]. Journal of Physics: Condensed Matter, 2005, 17: 2045-2058.
[17]  WANG Y D, CHEN N X. Atomistic study of misfit dislocation in metal/SiC(111) interfaces[J]. Journal of Physics: Condensed Matter, 2010, 22: 135009
[18]  REFSON K. CASTEP user guide[M]. San Diego: Accelrys Software Inc, 2014.
[19]  MONKHORST H J, PACK J D. Special points for Brillouin-zone integrations[J]. Physical Review B, 1976, 13: 5188-5192.
[20]  HUANG Y X, WANG T H, GUO W Q, et al. Microstructure and surface mechanical property of AZ31 Mg/SiCp surface composite fabricated by direct friction stir processing[J]. Materials & Design, 2014, 59: 274-278.
[21]  FEEST E A. Interfacial phenomena in metal-matrix compo-sites[J]. Composites, 1994, 25(2): 75-86.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133