|
- 2017
考虑纤维初始位错的复合材料轴向压缩性能
|
Abstract:
通过试验及模拟对复合材料的轴向压缩失效过程进行了研究。试验中,采用高速摄像机对失效过程进行捕捉,并对最终破坏模式进行光学显微镜分析。基于纤维初始位错、纤维随机强度及基体Ducker-Prager塑性本构,通过有限元软件ABAQUS建立了复合材料轴向压缩的有限元模型,并对比分析剪切型及拉伸型两种不同初始位错模型的模拟结果。研究结果表明,复合材料轴向压缩包含弹性变形及塑性变形阶段,离散的纤维基体二维有限元模型能够有效模拟压缩的渐进损伤过程,且模拟结果与试验结果相吻合。复合材料轴向压缩强度是纤维初始位错及塑性基体剪切屈服共同作用的结果,其随着纤维初始位错幅值的减小、波长的增加及纤维体积分数的增加而增加。 Response of carbon fiber composites under longitudinal compression were researched using the tool of compressive test and finite element simulation. The progressive damage during the loading process was detected with high speed camera and the final failure mode was observed by optical microscope. Based on fiber initial misalignment and matrix Drucker-Prager plastic constitutive model, finite element models were established using ABAQUS to analyze the results of different fiber initial misalignment models including shear mode and extensional mode. Results show that elastic and plastic deformations are both found during the longitudinal compression. Discrete two-dimensional fiber-matrix finite element model can efficiently simulate the process of compression, which corresponds to the test results. Compressive strength of composites depends on the fiber initial misalignment and shear yielding of plastic matrix. And it increases with the decreasing of fiber initial misalignment amplitude, increasing of fiber initial misalignment wavelength, as well as the increasing of fiber volume fraction.
[1] | BERBINAU P, SOUTIS C, GUZ I A. Compressive failure of 0 unidirectional carbon-fibre-reinforced plastic (CFRP) laminates by fibre microbuckling[J]. Composites Science and Technology, 1999, 59(9): 1451-1455. |
[2] | BUDIANSKY B. Micromechanics[J]. Computers & Structures, 1983, 16(1): 3-12. |
[3] | ROSEN B W. Mechanics of composite strengthening in fiber composite materials[M]. Metals Park, Ohio: American Society for Metals, 1965: 37-75. |
[4] | SOUTIS C, FLECK N A. Static compression failure of carbon fibre T800/924C composite plate with a single hole[J]. Journal of Composite Materials, 1990, 24(5): 536-558. |
[5] | KYRIAKIDES S, ARSECULERATNE R, PERRY E J, et al. On the compressive failure of fiber reinforced composites[J]. International Journal of Solids and Structures, 1995, 32(6): 689-738. |
[6] | MORAN P M, LIU X H, SHIH C F. Kink band formation and band broadening in fiber composites under compressive loading[J]. Acta Metallurgica et Materialia, 1995, 43(8): 2943-2958. |
[7] | JUMAHAT A, SOUTIS C, JONES F R, et al. Fracture mechanisms and failure analysis of carbon fibre/toughened epoxy composites subjected to compressive loading[J]. Composite Structures, 2010, 92(2): 295-305. |
[8] | 魏宏艳, 杨胜春, 沈真, 等. 复合材料压缩试验方法的对比分析与研究[C]//第十五届全国复合材料学术会议论文集. 北京: 中国力学学会, 2008, 2: 790-794. WEI H Y, YANG S C, SHEN Z, et al. Research on test methods for determining the compressive properties of composite material[C]//Proceedings of the 15th National Conference on Composite Materials. Beijing: Chinese Society of Theoretical and Applied Mechanics, 2008, 2: 790-794 (in Chinese). |
[9] | ZIDEK R A E, V?LLMECKE C. Analytical studies on the imperfection sensitivity and on the kink band inclination angle of unidirectional fiber composites[J]. Composites Part A: Applied Science and Manufacturing, 2014, 64: 177-184. |
[10] | 国家质量技术监督局. 单向纤维增强塑料弯曲性能试验方法:GB/T 3356—2005[S]. 北京:中国标准出版社, 2005. State Bureau of Quality and Technical Supervision. Test method for flexural propertied of unidirectional fiber reinforced plastic: GB/T 3356—2005[S]. Beijing: Standard Press of China, 2005 (in Chinese). |
[11] | JUMAHAT A, SOUTIS C, JONES F R, et al. Fracture mechanisms and failure analysis of carbon fibre/toughened epoxy composites subjected to compressive loading[J]. Composite Structures, 2010, 92(2): 295-305. |
[12] | HSU S Y, VOGLER T J, KYRIAKIDES S. Compressive strength predictions for fiber composites[J]. Journal of Applied Mechanics, 1998, 65(1): 7-16. |
[13] | PIMENTA S, GUTKIN R, PINHO S T, et al. A micromechanical model for kink-band formation: Part I—Experimental study and numerical modelling[J]. Composites Science and Technology, 2009, 69(7): 948-955. |
[14] | KYRIAKIDES S, RUFF A E. Aspects of the failure and postfailure of fiber composites in compression[J]. Journal of Composite Materials, 1997, 31(16): 1633-1670. |
[15] | PRABHAKAR P, WAAS A M. Micromechanical modeling to determine the compressive strength and failure mode interaction of multidirectional laminates[J]. Composites Part A: Applied Science and Manufacturing, 2013, 50: 11-21. |
[16] | JELF P M, FLECK N A. Compression failure mechanisms in unidirectional composites[J]. Journal of Composite Materials, 1992, 26(18): 2706-2726. |
[17] | UEDA M, SAITO W, IMAHORI R, et al. Longitudinal direct compression test of a single carbon fiber in a scanning electron microscope[J]. Composites Part A: Applied Science and Manufacturing, 2014, 67: 96-101. |
[18] | CARLSSON L A, SORENSEN C. ABAQUS theory manual[M]. USA: HKS Inc, 2010. |
[19] | YANG L, YAN Y, LIU Y, et al. Microscopic failure mechanisms of fiber-reinforced polymer composites under transverse tension and compression[J]. Composites Science and Technology, 2012, 72(15): 1818-1825. |
[20] | GONZáLEZ C, LLORCA J. Mechanical behavior of unidirectional fiber-reinforced polymers under transverse compression: microscopic mechanisms and modeling[J]. Composites Science and Technology, 2007, 67(13): 2795-2806. |
[21] | VOGLER T J, HSU S Y, KYRIAKIDES S. On the initiation and growth of kink bands in fiber composites. Part Ⅱ: Analysis[J]. International Journal of Solids and Structures, 2001, 38(15): 2653-2682. |
[22] | 陈祥宝. 聚合物基复合材料手册[M]. 北京:化学工业出版社材料科学与工程出版中心, 2004. CHEN X B. Handbook of polymer matrix composites[M]. Beijing: Materials Science and Engineering Publishing Center, Chemical Industry Press, 2004 (in Chinese). |