|
- 2016
高性能二维碳/碳复合材料的制备与性能
|
Abstract:
为获得高性能热结构复合材料,以国产T300碳纤维为原料,通过碳布预浸料交替铺层热压及液相浸渍裂解工艺方法制备了一系列二维碳/碳复合材料,并对二维碳/碳复合材料的微观结构特征、力学性能及烧蚀性能进行了测试与分析。研究结果表明:碳布规格及制备工艺对二维碳/碳复合材料力学性能有较大影响,当碳布规格选用八枚缎纹、经过碳化预处理且高温处理温度达到2 300℃时,二维碳/碳复合材料表现出较好的综合性能,拉伸强度和层间剪切强度的最大值分别高达301 MPa和12.4 MPa,达到了国际先进水平;在模拟典型服役环境考核状态下,制备的不同规格二维碳/碳复合材料的烧蚀性能基本相当,均未出现由于层间强度偏低而发生的烧蚀揭层现象,表现出较好的烧蚀均匀性和结构可靠性。 In order to obtain hot structure composites with high performances, a series of two-dimensional carbon/carbon composites was prepared with the domestic T300 carbon fiber as raw material by carbon cloth prepreg layer alternating ply hot pressing and liquid impregnation pyrolysis method, and the microstructure features, mechanical properties and ablation properties of two dimensional carbon/carbon composites were characterized and discussed. The investigation results show that the types of carbon cloth and preparation process have obvious effects on the mechanical properties of two dimensional carbon/carbon composites. When the type of carbon cloth selects eight heddle satin, after carbonization pre-treatment and the temperature of high temperature treatment reaches 2 300℃, the highest values of tensile strength and interlaminar shear strength for two dimensional carbon/carbon composites reach 301 MPa and 12.4 MPa respectively, which reach the international advanced level. The ablation properties for different two dimensional carbon/carbon composites are almost the same under the simulated inspection status of typical service condition. None of them has the ablation peeling off phenomenon due to the low interlaminar strength, showing good ablation uniformity and structural reliability.
[1] | 冯志海. 关于我国高性能碳纤维需求和发展的几点想法[J]. 新材料产业, 2010(9): 19-24. FENG Z H. Ideas on the demand and development of high performance carbon fiber in China[J]. Advanced Materials Industry, 2010(9): 19-24(in Chinese). |
[2] | CHOURY J J. Carbon-carbon materials for nozzles of solid propellant rocket motors[C]//12th Propulsion Conference. Reston: AIAA, 1976: 609 |
[3] | SCHMIDT D L. Carbon-carbon composites-A historical perspective: WL-TR-96-4107[R]. Dayton: University of Dayton Research Institute, 1996. |
[4] | SULLIVAN B J, HOPP K, HOWREN D, et al. Development of enhanced interlaminar strength carbon-carbon materials for high temperature propulsion components[C]//Proceedings of 2010 International Carbon Conference. Lexington: The American Carbon Society, 2010: 555. |
[5] | 航天材料及工艺研究所. 石墨材料压缩试验方法: DqES293-94[S]. 北京: 航天材料及工艺研究所, 1994. Aerospace Research Institute of Materials and Processing Technology. Test method for compressive properties of graphite materials: DqES293-94[S]. Beijing: Aerospace Research Institute of Materials and Processing Technology, 1994(in Chinese). |
[6] | 航空工业部708所. 三向纤维增强复合材料弯曲性能试验方法: QJ 2099-91[S]. 北京: 中华人民共和国航空工业部, 1991. Ministry of Aviation Industry 708. Test method for flexural properties of 3D fiber-reinforced composite materials: QJ 2099-91[S]. Beijing: Ministry of Aviation Industry of People's Republic of China, 1991(in Chinese). |
[7] | 张守阳, 李贺军, 李克智, 等. C/C复合材料层间裂纹扩展研究[J]. 无机材料学报, 2002, 17(1): 91-95. ZHANG S Y, LI H J, LI K Z, et al. Interlayer crack extension mode in laminated carbon/carbon composites[J]. Journal of Inorganic Materials, 2002, 17(1): 91-95(in Chinese). |
[8] | FITZER E. The future of carbon/carbon composites[J]. Carbon, 1987, 25(2): 163-190. |
[9] | LU S L, RAND B. Large diameter carbon filaments from mesophase pitch for thermal management applications[J]. New Carbon Mater, 2000, 15(1): 1-5. |
[10] | STRIFE J R, SHEEHAN J E. Ceramic coatings for carbon-carbon composites[J]. American Ceramic Society Bulletin, 1988, 67(2): 369-374. |
[11] | SAVAGE G. Carbon-carbon composites[M]. London: Chapman and Hall, 1993: 193-225. |
[12] | GLASS D E. Ceramic matrix composite (CMC) thermal protection systems (TPS) and hot structures for hypersonic vehicles[C]//15th AIAA Space Planes and Hypersonic Systems and Technologies Conference. Reston: AIAA, 2008: 2682. |
[13] | GLASS D E, DIRLING R, CROOP H, et al. Materials development for hypersonic flight vehicles[C]//14th AIAA/AHI Space Planes and Hypersonic Systems and Technologies Conference. Reston: AIAA, 2006: 8122. |
[14] | 姜贵庆, 张学军, 王淑华, 等. 飞行器尖化前缘的热结构特性[J]. 宇航材料工艺, 2007, 37(4): 8-11. JIANG G Q, ZHANG X J, WANG S H, et al. Thermal structure properties of sharp leading edges for spacecraft[J]. Aerospace Materials & Technology, 2007, 37(4): 8-11(in Chinese). |
[15] | 王浚, 王佩广. 高超声速飞行器一体化防热与热控设计方法[J]. 北京航空航天大学学报, 2006, 32(10): 1129-1135. WANG J, WANG P G. Integrated thermal protection and control system design methodology[J]. Journal of Beijing University of Aeronautics and Astronautics, 2006, 32(10): 1129-1135(in Chinese). |
[16] | 康开华. 高超声速技术飞行器(HTV)相关试验情况[J]. 国际航天, 2010, 40: 5-12. KANG K H. Experimentation of hypersonic technology vehicle (HTV)[J]. International Space, 2010, 40: 5-12(in Chinese). |
[17] | 航天材料及工艺研究所. 细编穿刺碳/碳复合材料拉伸试验方法: DqES415-2005[S]. 北京: 航天材料及工艺研究所, 2005. Aerospace Research Institute of Materials and Processing Technology. Test method for tensile properties of fine weave pierced carbon/carbon composites: DqES415-2005[S]. Beijing: Aerospace Research Institute of Materials and Processing Technology, 2005(in Chinese). |
[18] | American Society for Testing and Materials International. Standard test method for shear strength of continuous fiber-reinforced advanced ceramics at ambient temperatures: ASTM C1292-10[S]. West Conshohocken: ASTM International, 2010. |