全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2016 

还原氧化石墨烯/MnO2气凝胶对甲醛的去除
In removal of formaldehyde with reduced graphene oxide/MnO2 aerogel

DOI: 10.13801/j.cnki.fhclxb.20160125.002

Keywords: 水热法,还原氧化石墨烯/MnO2,气凝胶,甲醛,去除
hydrothermal method
,reduced graphene oxide/MnO2,aerogel,formaldehyde,removal

Full-Text   Cite this paper   Add to My Lib

Abstract:

为制备新型高效去除甲醛材料,采用水热法制备了还原氧化石墨烯(RGO)/MnO2气凝胶,通过SEM、TEM、TGA、XPS和BET对RGO/MnO2气凝胶的形态结构及性能进行了表征,并研究了RGO/MnO2气凝胶对甲醛的去除能力。结果表明:在RGO/MnO2气凝胶的前驱体中,氧化石墨烯(GO)为单层二维纳米材料;MnO2气凝胶由MnO2纳米线组成,MnO2纳米线的直径在40 nm左右,长度达5 μm以上,且属于隐钾锰矿型结构。RGO/MnO2气凝胶是一种由片状材料组成的具有三维多孔结构的材料,该片状材料是由均匀分布的RGO纳米片和MnO2纳米线组成的,RGO将MnO2纳米线隔开,起到隔板的作用,使MnO2纳米线在RGO中均匀分布。RGO/MnO2气凝胶在100℃以下具有良好的热学稳定性。RGO/MnO2气凝胶对低浓度甲醛具有较好的去除能力,去除率为62.5%,与MnO2气凝胶相比,相同条件下RGO/MnO2气凝胶对甲醛的去除率提高了30.0%,证实RGO有助于提高MnO2对甲醛的去除能力。 In order to fabricate a novel formaldehyde removal material with high proformance, reduced graphene oxide (RGO)/MnO2 aerogel was fabricated by hydrothermal method. The morphological structures and properties of RGO/MnO2 aerogel were characterized by SEM, TEM, TGA, XPS and BET, and the removal activities of RGO/MnO2 aerogel for formaldehyde were investigated. The results show that among the precursors of RGO/MnO2 aerogel, graphene oxide (GO) is proved to be single-layer two-dimensional nanosheets, MnO2 aerogel consists of MnO2 nanowires, the diameter of MnO2 nanowires is about 40 nm, the length reaches above 5 μm, and belongs to cryptomelane structure. RGO/MnO2 aerogel is a material which have three-dimensional porous structure consists of flake materials, and such flake materials are made of homogeneously dispersed RGO nanosheets and MnO2 nanowires, RGO nanosheets act as clapboards which separate MnO2 nanowires and makes MnO2 nanowires homogeneously dispersed in RGO. RGO/MnO2 aerogel has favorable thermal stability under 100℃. RGO/MnO2 aerogel possesses a preferable removal activity for formaldehyde with low concentration, the removal ratio is 62.5%, the removal rate for formaldehyde of RGO/MnO2 aerogel under the same condition is improved by 30.0% comparing with that of MnO2 aerogel, which proves that RGO is beneficial for enhancing the removal activity of MnO2 for formaldehyde. 国家重点研发计划(2016YFB0303000);天津市应用基础与前沿计划重点项目(13JCZDJC32100)

References

[1]  顾诚, 陈志刚, 刘成宝, 等. 真空浸渍制备膨胀石墨基C/C复合材料及其甲醛吸附性能[J]. 复合材料学报, 2013, 30(4): 108-115. GU C, CHEN Z G, LIU C B, et al. Preparation of expanded graphite-based C/C composites by vacuum impregnation and its adsirption properties on formaldehyde[J]. Acta Materiae Compositae Sinica, 2013, 30(4): 108-115(in Chinese).
[2]  高如琴, 郝丹迪, 耿悦. 多孔陶瓷固载TiO2薄膜的制备及甲醛光催化动力学[J]. 复合材料学报, 2015, 32(1): 142-148. GAO R Q, HAO D D, GENG Y. Preparation of porous ceramic immobilized TiO2 thin film and formaldehyde photocatalytic kinetics[J]. Acta Materiae Compositae Sinica, 2015, 32(1): 142-148(in Chinese).
[3]  QUIROZ TORRES J, ROYER S, BELLAT J P, et al. Formaldehyde: Catalytic oxidation as a promising soft way of elimination[J]. ChemSusChem, 2013, 6(4): 578-592.
[4]  CHEN T, DOU H, LI X, et al. Tunnel structure effect of manganese oxides in complete oxidation of formaldehyde[J]. Microporous & Mesoporous Materials, 2009, 122(1): 270-274.
[5]  JUNG S M, JUNG H Y, DRESSELHAUS M S, et al. A facile route for 3D aerogels from nanostructured 1D and 2D materials[J]. Scientific Reports, 2012, 2: 849.
[6]  YANG Y K, ZHANG H, JIN S G. A new method of activated carbon loading MnO2 to formaldehyde degradation[J]. Advanced Materials Research, 2011, 332-334: 1743-1746.
[7]  ADHIKARI B, BISWAS A, BANERJEE A. Graphene oxide-based hydrogels to make metal nanoparticle-containing reduced graphene oxide-based functional hybrid hydrogels[J]. ACS Applied Materials & Interfaces, 2012, 4(10): 5472-5482.
[8]  ?ZACAR M, POYRAZ A S, GENUINO H C, et al. Influence of silver on the catalytic properties of the cryptomelane and Ag-hollandite types manganese oxides OMS-2 in the low-temperature CO oxidation[J]. Applied Catalysis A: General, 2013, 462-463: 64-74.
[9]  XU Z, GAO C. In situ polymerization approach to graphene-reinforced nylon-6 composites[J]. Macromolecules, 2010, 43(16): 6716-6723.
[10]  JUNG S M, JUNG H Y, FANG W, et al. A facile methodology for the production of in situ inorganic nanowire hydrogels/aerogels[J]. Nano Letters, 2014, 14(4): 1810-1817.
[11]  RENHU W, JUNHUA L. Effects of precursor and sulfation on OMS-2 catalyst for oxidation of ethanol and acetaldehyde at low temperatures[J]. Environmental Science & Technology, 2010, 44(11): 4282-4287.
[12]  WANG S, ZHANG Z, LIU H, et al. One-step synthesis of manganese dioxide/polystyrene nanocomposite foams via high internal phase emulsion and study of their catalytic activity[J]. Colloid and Polymer Science, 2010, 288(9): 1031-1039.
[13]  SEKINE Y. Oxidative decomposition of formaldehyde by metal oxides at room temperature[J]. Atmospheric Environment, 2002, 36(2): 5543-5547.
[14]  XU X, LI H, ZHANG Q, et al. Self-sensing, ultralight, and conductive 3D graphene/iron oxide aerogel elastomer deformable in a magnetic field[J]. ACS Nano, 2015, 9(4): 3969-3977.
[15]  张敏, 杨莉芬. 室内甲醛污染的危害及防治对策[J]. 能源与环境科学, 2013, 5(9): 162-164. ZHANG M, YANG L F. The harm of indoor formaldehyde pollution and the prevention countermeasures[J]. Journal of Henan Science and Technology, 2013, 5(9): 162-164(in Chinese).

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133