全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2016 

模压工艺对玻璃纤维增强聚丙烯复合材料层合板力学性能的影响
Influence of molding press on mechanical properties of glass fiber reinforced polypropylene composite laminates

DOI: 10.13801/j.cnki.fhclxb.20160317.002

Keywords: 热塑性复合材料,模压工艺,响应曲面法,力学性能,自动铺放
thermoplastic composites
,molding press,response hook surface methodology,mechanical property,automated placement

Full-Text   Cite this paper   Add to My Lib

Abstract:

利用热模压工艺制备玻璃纤维增强聚丙烯(GF/PP)复合材料层合板,通过差示扫描量热(DSC)法试验分析,确定相变参数,运用ANSYS有限元分析,将复合材料热力学参数与温度的非线性关系定义到材料特性中,研究模压成型过程中温度场变化情况,为模压成型工艺制度的确立提供理论指导和依据。以压缩强度、层间剪切强度和冲击韧性作为力学性能评价指标,采用响应曲面法探讨和分析制备工艺对GF/PP复合材料层合板力学性能的影响,得到最优模压工艺制备参数,获得最高复合材料层合板力学性能,为GF/PP复合材料自动铺放奠定铺放工艺基础。试验结果表明:模压加热工艺参数对复合材料层合板力学性能的影响度(从大到小)依次为:热压温度、热压时间、热压压力。较优的模压加热工艺参数为:热压温度228℃、热压时间6 min、热压压力1.1 MPa,在此工艺条件下制备的GF/PP复合材料层合板,层间剪切强度为31.12 MPa,压缩强度为100.96 MPa,冲击韧性为2.27 kJ/cm2。 The glass fiber reinforced polypropylene (GF/PP) composite laminates were prepared by hot molding press. Phase transition parameters were obtained by using differential scanning calorimetry (DSC) method. The variation characteristics of temperature field on the moulding processing of GF/PP composites was studied by using ANSYS finite element analysis, which provides a theoretical guidance and basis for optimizing the molding press process. The nonlinear relationship between thermodynamic parameters of composite and the temperature were defined into the material properties. The mechanical performance evaluation index of the material was evaluated by measuring the compression strength, interlaminar shear strength and impact toughness. The effect of preparation process on the mechanical properties of GF/PP composite laminates was discussed and analyzed using response hook surface methodology. The optimized molding press preparation parameters and the mechanical performance of composite laminates were obtained which laid the technology foundation for the automated placement of GF/PP composite. Test results show that the influence degrees of molding press process parameters for the mechanical performance of composite laminates are as follows:heating press temperature, heat holding time and heat holding pressure. The better molding press heating process parameters and the mechanical performance are as follows:heating temperature of 228℃, heating holding time of 6 min, holding pressure of 1.1 MPa and interlaminar shear strength of 31.12 MPa, compression strength of 100.96 MPa, impact toughness of 2.27 kJ/cm2. 国家“973”计划(2014CB046501);江苏省高校优势学科建设工程

References

[1]  韩振宇, 李玥华, 富宏亚, 等. 热塑性复合材料纤维铺放工艺的研究进展[J]. 材料工程, 2012(2): 91-96. HAN Z Y, LI Y H, FU H Y, et al. Thermoplastic composites fiber placement process research[J]. Journal of Materials Engineering, 2012(2): 91-96(in Chinese).
[2]  尹国海. 我国聚丙烯工业发展现状及前景分析[J]. 化工新型材料, 2012, 40(8): 5-7. YIN G H. Present development and prospect anslysis on polypropylene industry of China[J]. New Chemical Materials, 2012, 40(8): 5-7(in Chinese).
[3]  曾彪, 刘玉飞, 王宁, 等. 玻璃纤维增强聚丙烯复合材料力学性能的研究进展[J]. 上海塑料, 2015(2): 11-16. ZENG B, LIU Y F, WANG N, et al. Research progress of mechanical property of glass fiber reinforced polypropylene composites[J]. Shanghai Plastics, 2015(2): 11-16(in Chinese).
[4]  富宏亚, 李玥华. 热塑性复合材料纤维铺放技术研究进展[J]. 航空制造技术, 2012(18): 44-48. FU H Y, LI Y H. Research on thermoplastic composites fiber placement technology[J]. Aeronautical Manufacturing Technology, 2012(18): 44-48(in Chinese).
[5]  顾轶卓, 李敏, 李艳霞, 等. 飞行器结构用复合材料制造技术与工艺理论进展[J]. 航空学报, 2015, 36(8): 2773-2797. GU Y Z, LI M, LI Y X, et al. Progress on manufacturing technology and process theory of aircraft composite structure[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(8): 2773-2797(in Chinese).
[6]  American Society for Testing and Material International. Text method for determining the compressive properties of polymer matrix composite materials using the combined loading compression (CLC) test fixture: ASTM D6641/D6641M-09[S]. West Conshohocken: ASTM International, 2010.
[7]  American Society for Testing and Material International. Text method for measuring the damage resistance of a fiber reinforced polymer matrix composite to a drop-weight impact event: ASTM D7136/D7136M-07[S]. West Conshohocken: ASTM International, 2010.
[8]  张继奎, 关志东, 郦正能. 热固性复合材料固化过程中温度场的三维有限元分析[J]. 复合材料学报, 2006, 23(2): 175-179. ZHANG J K, GUAN Z D, LI Z N. Three-dimensional finite element analysis for the temperature field of thermoset composites during cure process[J]. Acta Materiae Compositae Sinica, 2006, 23(2): 175-179(in Chinese).
[9]  陈祥宝, 邢丽英, 周正刚. 树脂基复合材料制造过程温度变化模拟研究[J]. 航空材料学报, 2009, 29(2): 61-65. CHEN X B, XING L Y, ZHOU Z G. Three-dimensional finite element analysis for the temperature field of thermoset composites during cure process[J]. Acta Materiae Compositae Sinica, 2009, 29(2): 61-65(in Chinese).
[10]  HASSAN N, THOMPSON J E, BATRA R C. A heat transfer analysis of the fiber placement composite manufacturing process[J]. Journal of Reinforced Plastics and Composites, 2005, 24(3): 869-890.
[11]  中国国家标准化管理委员会. 单向纤维增强塑料层间剪切强度试验方法: GB 3357-82[S]. 北京: 中国标准出版社, 1998. Standard Administration of the People's Republic of China. Test method for interplay shear strength of unidirectional fiber reinforced plastics: GB 3357-82[S]. Beijing: Standards Press of China, 1998(in Chinese).
[12]  宋清华, 肖军, 文立伟, 等. 玻璃纤维增强热塑性塑料在航空航天领域中的应用[J]. 玻璃纤维, 2012(6): 40-43. SONG Q H, XIAO J, WEN L W, et al. Applications of glass fiber reinforced thermoplastics in aerospace sector[J]. Fiber Glass, 2012(6): 40-43(in Chinese).
[13]  宋清华, 文立伟, 严飙, 等. 热塑性树脂基复合材料自动铺带技术[J]. 航空制造技术, 2013(15): 42-44. SONG Q H, WEN L W, YAN B, et al. Automated tape laying technology of thermoplastic and resin-based composites[J]. Aeronautical Manufacturing Technology, 2013(15): 42-44(in Chinese).
[14]  李玥华. 热塑性预浸丝变角度铺放及其轨迹划的研究[D]. 哈尔滨: 哈尔滨工业大学, 2013. LI Y H. Research on thermoplastic towpreg variable angle placement and trajectory planning[D]. Harbin: Harbin Institute of Technology, 2013(in Chinese).
[15]  杨树, 叶莹. 聚乙二醇/聚丙烯定形相变材料的制备及表征[J]. 纺织学报, 2013, 34(7): 10-14. YANG S, YE Y. Preparation and characterization of polyethylene glycol/PP form-stable phase change materials[J]. Journal of Textile Research, 2013, 34(7): 10-14(in Chinese).
[16]  杨涛, 申艳娇, 杨素君, 等. 预浸带铺放过程温度场动态仿真与实验研究[J]. 固体火箭技术, 2015, 38(3): 410-414. YANG T, SHEN Y J, YANG S J, et al. Dynamic finite element simulation and experimental study on heat transfer in prepreg placement process[J]. Journal of Solid Rocket Technology, 2015, 38(3): 410-414(in Chinese).
[17]  YARDIMCI M A, PISTOR C M, GV?ERI S I, et al. Process planning for on-line consolidation in tape winding of noncircular thermoplastic composites[J]. Journal of Manufacturing Processes, 2000, 2(8): 83-99.
[18]  李志猛, 杨涛, 杜宇, 等. 热塑性预浸丝铺放过程中温度场数学模型机器仿真[J]. 宇航材料工艺, 2012, 42(3): 20-23. LI Z M, YANG T, DU Y. Modeling and simulation of heat transfer in thermoplastic composite tow-placement process[J]. Aerospace Materials & Technology, 2012, 42(3): 20-23(in Chinese).
[19]  DIZED T, SHIRINZADEH B. Robotic fiber placement process analysis and optimization using response surface method[J]. Advanced Manufacturing Technology, 2011, 55: 393-404.
[20]  孙成. 复合材料翼梁自动铺丝技术研究[D]. 南京: 南京航空航天大学, 2013. SUN C. Research on automated fiber placement technology of composite wing spar[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2013(in Chinese).

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133