|
- 2016
添加La2O3对搅拌摩擦加工制备Ni/Al复合材料组织和性能的影响
|
Abstract:
采用搅拌摩擦加工(FSP)方法在Al基体中添加微米级Ni粉及(Ni+La2O3)混合粉末,制备Ni/Al及(Ni+La2O3)/Al复合材料。采用SEM、EDS及XRD对复合区微观结构及相组成进行分析,采用室温拉伸试验对Ni/Al、(Ni+La2O3)/Al复合材料力学性能进行了测试。结果表明:Ni/Al复合材料中主要成分为Al、Al3Ni和Ni粉团聚物,Ni粉团聚物尺寸粗大,形貌呈壳-核结构,核为团聚的Ni,壳为Al3Ni增强相层;La2O3对Al-Ni原位反应有较大影响,能够强化Al-Ni原位反应,生成更多增强相;La2O3阻碍了Ni粉的相互吸附和聚拢行为,从而减少了团聚现象;(Ni+La2O3)/Al复合材料的抗拉强度可以达到186 MPa,与Al基体(抗拉强度72 MPa)、纯Al FSP(抗拉强度90 MPa)、Ni/Al复合材料(抗拉强度144 MPa)相比,其抗拉强度分别提高了158%、107%、29%。 Ni/Al and (Ni+La2O3)/Al composites were fabricated by adding micron Ni powder and (Ni+La2O3) mixed powder to the Al matrix with means of the friction stir processing. The microstructures and phase composition of the composite zone were analyzed by SEM, EDS and XRD. Mechanical properties of Ni/Al and (Ni+La2O3)/Al composites were tested by tensile test at room temperature. Results show that Ni/Al composites are mainly composed of Al, Al3Ni and agglomerates of Ni powder, the size of agglomerates of Ni powder is very coarse and the morphology is core-shell structure. The core is composed of agglomerated Ni, the shell is composed of the reinforced phase layer of Al3Ni; La2O3 reinforces Al-Ni in-situ reaction to produce more reinforced phase; La2O3 reduces the agglomeration of Ni powder by retarding the mutual adsorption and aggregated behavior of Ni powder; The tensile strength of (Ni+La2O3)/Al composites can reach 186 MPa. Compared with the Al matrix(tensile strength is 72 MPa), the FSPed Al(tensile strength is 90 MPa) and Ni/Al composites(tensile strength is 144 MPa), the tensile strength of (Ni+La2O3)/Al composites has increased by 158%, 107% and 29% respectively. 国家自然科学基金(51465044,51364037);江西省自然科学基金(20142BAB216019)
[1] | KE L M, HUANG C P, XING L. Al-Ni intermetallic composites produced in situ by friction stir processing[J]. Journal of Alloys and Compounds, 2010, 503(2): 494-499. |
[2] | SAHRAEINEJAD S, IZADI H, HAGHSHENAS M, et al. Fabrication of metal matrix composites by friction stir processing with different particles and processing parameters[J]. Materials Science and Engineering: A, 2015, 626: 505-513. |
[3] | 强金丽, 黄春平, 张海军. 粉末粒度对FSP制备Al-Ni金属间化合物增强铝基复合材料的影响[J]. 稀有金属材料与工程, 2015, 44(7): 1763-1767. QIANG J L, HUANG C P, ZHANG H J. Influence of powder size on the Al-Ni in-termetallic compound reinforced aluminum matrix composites fabricated by FSP[J]. Rare Metal Materials and Engineering, 2015, 44(7): 1763-1767 (in Chinese). |
[4] | MISHRA R, MAHONEY M, MCFADDEN S, et al. High strain rate superplasticity in friction stir processed 7075Al alloy[J]. Scripta Materialia, 1999, 42(2): 163-168. |
[5] | DOLATKHAH A, GOLBABAEI P, GIVI M, et al. Investigating effects of process parameters on microstructural and mechanical properties of Al5052/SiC metal matrix composite fabricated via friction stir processing[J]. Materials and Design, 2014, 37: 458-464. |
[6] | YADAV D, BAURI R. Processing, microstructure and mechanical properties of nickel particles embedded aluminium matrix composite[J]. Materials Science and Engineering: A, 2011, 528(3): 1326-1333. |
[7] | 黄春平, 柯黎明, 邢丽, 等. 搅拌摩擦加工研究进展及前景展望[J]. 稀有金属材料与工程, 2011, 40(1): 183-188. HUANG C P, KE L M, XING L, et al. Research process and prospect of friction stir processing[J]. Rare Metal Materials and Engineering, 2011, 40(1): 183-188 (in Chinese). |
[8] | LIU P, SHI Q Y, ZHANG Y B. Microstructural evaluation and corrosion properties of aluminium matrix surface composite adding Al-based amorphous fabricated by friction stir processing[J]. Composites Part B: Engineering, 2013, 52(9): 137-143. |
[9] | 熊江涛, 张赋升, 李金龙, 等. 搅拌摩擦加工制备Al3Ni-Al原位反应复合体[J]. 稀有金属材料与工程, 2010, 39(1): 139-143. XIONG J T, ZHANG F S, LI J L, et al. In-situ synthesized Al3Ti-Al composites by friction stir processing[J]. Rare Metal Materials and Engineering, 2010, 39(1): 139-143 (in Chinese). |
[10] | CESCHINI L, MINAK G, MORRI A. Forging of the AA2618/20vol. % Al2O3P composite effects on microstructure and tensile properties[J]. Composites Science and Technology, 2009, 69(11-12): 1783-1789. |
[11] | 陈秋玲, 孙艳. 颗粒增强铝基复合材料的研究[J]. 中国资源综合利用, 2003(6): 31-33. CHEN Q L, SUN Y. Research on particle reinforced aluminum matrix composite[J]. China Resources Comprehensive Utilization, 2003(6): 31-33 (in Chinese). |
[12] | 蒋淑英, 李世春. Ni-Al系金属间化合物价电子结构计算及界面反应预测[J]. 稀有金属材料与工程, 2011, 40(8): 1355-1360. JIANG S Y, LI S C. Valence electron structure calculation and interface reaction prediction of phase in Ni-Al system[J]. Rare Metal Materials and Engineering, 2011, 40(8): 1355-1360 (in Chinese). |
[13] | 肖伯律, 马宗义, 王全兆, 等. 高性能铝基复合材料的设计与加工技术[J]. 中国材料进展, 2010, 29(4): 28-36. XIAO B L, MA Z Y, WANG Q Z, et al. An overview of high performance aluminum matrix composites: Desigin and processing technologies[J]. Materials China, 2010, 29(4): 28-36 (in Chinese). |
[14] | LIU Q, KE L M, LIU F C, et al. Microstructure and mechanical property of multi-walled carbon nanotubes reinforced aluminum matrix composites fabricated by friction stir processing[J]. Materials and Design, 2013, 45: 343-348. |
[15] | TJONG S C, MA Z Y. Microstructural and mechanical characteristics of in situ metal matrix composites[J]. Materials Science and Engineering: R: Reports, 2000, 29(3-4): 49-113. |
[16] | SHAFIEI A. Wear assessment of Al/Al2O3 nano-composite surface layer produced using friction stir processing[J]. Wear, 2011, 270(5-6): 403-412. |
[17] | 钱锦文, 李京龙, 熊江涛, 等. 搅拌摩擦加工原位反应制备Al3Ti-Al表面复合层[J]. 焊接学报, 2010, 31(8): 61-64. QIAN J W, LI J L, XIONG J T, et al. In-situ synthesized Al3Ti-Al surface composites by friction stir processing[J]. Transactions of the China Welding Institution, 2010, 31(8): 61-64 (in Chinese). |