全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2016 

KH-570接枝改性碳纤维/乙烯-醋酸乙烯共聚物复合泡沫材料的制备及表征
Preparation and characterization of KH-570 grafting modified carbon fiber/ethylene-vinyl acetate copolymer foamed composites

DOI: 10.13801/j.cnki.fhclxb.20150723.003

Keywords: 乙烯-醋酸乙烯共聚物,碳纤维,化学接枝,复合材料,泡沫,力学性能
ethylene-vinyl acetate copolymer
,carbon fiber,chemical grafting,composites,foams,mechanical properties

Full-Text   Cite this paper   Add to My Lib

Abstract:

采用浓H2SO4/浓HNO3混合酸对碳纤维(CF)进行表面氧化处理得到氧化碳纤维(OCF),再利用γ-甲基丙烯酰氧丙基三甲氧基硅烷(KH-570)与OCF进一步反应得到KH-570接枝改性碳纤维(KCF),随后将其应用于乙烯-醋酸乙烯共聚物(EVA)复合泡沫材料中。利用FTIR、XPS、Raman、FESEM和电子万能试验机等考察了碳纤维的表面改性效果以及碳纤维/EVA复合材料的结构与性能。结果表明:氧化和接枝反应均可以增加碳纤维表面的活性官能团含量和粗糙度,从而改善碳纤维与EVA基体之间的相容性,使碳纤维/EVA复合泡沫材料的物理性能得到改善。相同条件下,KH-570接枝改性碳纤维/EVA复合泡沫材料的物理性能更优异。 The oxidized carbon fibers(OCF) were prepared via surface oxidation treatment of carbon fibers(CF) in concentrated H2SO4/concentrated HNO3 blend acid, and then OCF were modified by silane coupling agent γ-methacryloxypropyl trimethoxy silane(KH-570), to obtain the KH-570 grafting modified carbon fibers(KCF), which were subsequently applied to ethylene-vinyl acetate copolymer(EVA) foamed composites. The surface modified characteristics, the structures and properties of carbon fiber/EVA composites were investigated by FTIR, XPS, Raman, FESEM and electronic universal testing machine etc. The result shows that both oxidation and grafting reaction can increase the content of active functional groups and roughness on surface of carbon fiber, which can improve the compatibility between carbon fibers and EVA matrix, leading to improvement on physical properties of carbon fiber/EVA foamed composites. Under the same conditions, the KH-570 grafting modified carbon fiber/EVA foamed composites have superior physical properties. 福建省科技计划(2015H0016);福州市科技计划(2013-G-92);福建省高校产学合作科技重大关键资助项目(2012H6008)

References

[1]  赫玉欣, 马建中, 张丽, 等. 纳米OMMT/EVA-g-PU复合材料[J]. 复合材料学报, 2009, 26(2):54-58. HE Y X, MA J Z, ZHANG L, et al. Nano-OMMT/EVA-g-PU composites[J]. Acta Materiae Compositae Sinica, 2009, 26(2):54-58(in Chinese).
[2]  WANG B, WANG M H, XING Z, et al. Preparation of radiation crosslinked foams from low-density polyethylene/ethylene-vinyl acetate(LDPE/EVA) copolymer blend with a supercritical carbon dioxide approach[J]. Journal of Applied Polymer Science, 2013, 127(2):912-918.
[3]  陈志杰, 郑玉婴, 张延兵, 等. 无卤阻燃乙烯-醋酸乙烯酯共聚物泡沫复合材料的制备及性能表征[J]. 复合材料学报, 2015, 32(3):649-656. CHEN Z J, ZHENG Y Y, ZHANG Y B, et al. Preparation and characterization of halogen-free fire retardant ethylene-vinyl acetate copolymer foam composites[J]. Acta Materiae Compositae sinica, 2015, 32(3):649-656(in Chinese).
[4]  PARK K W, KIM G H, CHOWDURY S R. Improvement of compression set property of ethylene vinyl acetate copolymer/ethylene-1-butene copolymer/organoclay nanocomposite foams[J]. Polymer Engineering and Science, 2008, 48(6):1183-1190.
[5]  马建中, 段洲洋, 薛朝华, 等. 热塑性聚合物/蒙脱土对EVA发泡材料性能的影响[J]. 中国皮革, 2011, 40(18):116-119. MA J Z, DUAN Z Y, XUE Z H, et al. Effects of thermoplastic polymers/montmorillonite on properties of foamed ethylene vinyl acetate[J]. China Leather, 2011, 40(18):116-119(in Chinese).
[6]  韩利志, 周涛, 李飞, 等. SEBS对EVA发泡材料性能影响的研究[J]. 塑料工业, 2008, 36(3):39-42. HAN L Z, ZHOU T, LI F, et al. Study of effect of SEBS on property of foamed EVA[J]. China Plastics Industry, 2008, 36(3):39-42(in Chinese).
[7]  刘仿军, 宗荣峰, 鄢国平, 等. 轻质EVA鞋底材料的研究[J]. 塑料工业, 2009, 37(7):65-69. LIU F J, ZONG R F, YAN G P, et al. Study on light EVA shoes materials[J]. China Plastics Industry, 2009, 37(7):65-69(in Chinese).
[8]  ZHANG X Z, HUANG Y D, WANG T Y. Surface analysis of plasma grafted carbon fiber[J]. Applied Surface Science, 2006, 253(5):2885-2892.
[9]  DAI Z S, ZHANG B Y, SHI F H, et al. Effect of heat treatment on carbon fiber surface properties and fibers/epoxy interfacial adhesion[J]. Applied Surface Science, 2011, 257(20):8457-8461.
[10]  刘杰, 白艳霞, 田宇黎, 等. 电化学表面处理碳纤维结构及性能的影响[J]. 复合材料学报, 2012, 29(2):16-25. LIU J, BAI Y X, TIAN Y L, et al. Effect of the process of electrochemical modification on the surface structure and properties of PAN-based carbon fibers[J]. Acta Materiae Compositae Sinica, 2012, 29(2):16-25(in Chinese).
[11]  MACAK J M, TSUCHIYA H, TAVEIRA L, et al. Smooth anodic TiO2 nanotubes[J]. Angew Chem Int Ed, 2005, 44:7463-7465.
[12]  CHOI M H, JEON B H, CHUNG I J. The effect of coupling agent on electrical and mechanical properties of carbon fiber/phenolic resin composites[J]. Polymer, 2000, 41(9):3243-3252.
[13]  全国塑料标准化技术委员会. 塑料拉伸性能试验方法:GB/T 1040-2006[S]. 北京:中国标准出版社, 2006. National Technical Committee on Plastic Products of Standardization Adminstration of China. Plastics-Determination of tensile properties:GB/T 1040-2006[S]. Beijing:Standards Press of China, 2006(in Chinese).
[14]  全国塑料标准化技术委员会. 硫化橡胶回弹性的测定:GB/T 1681-2009[S]. 北京:中国标准出版社, 2009. National Technical Committee on Plastic Products of Standardization Adminstration of China. Rubber-Determination of rebound resilience of vulcanizates:GB/T 1681-2009[S]. Beijing:Standards Press of China, 2009(in Chinese).
[15]  XU B, WANG X S, LU Y. Surface modification of polyacrylonitdle-based carbon fibers and its interaction with imide[J]. Applied Surface Science, 2006, 53(5):2695-2701.
[16]  ZHOU X, LI Q Y, WU C F. Grafting of maleic anhydride onto carbon black surface via ultrasonic irradiation[J]. Applied Organometallic Chemistry, 2008, 22(2):78-81.
[17]  张海生, 王源生, 任小孟, 等. 化学接枝对碳纤维结构及其性能的影响[J]. 功能材料, 2014, 45(3):56-60. ZHANG H S, WANG Y S, REN X M, et al. Effect of chemical grafting on the surface structure of carbon fiber[J]. Journal of Functional Materials, 2014, 45(3):56-60(in Chinese).
[18]  TIWARI S, BIJWE J, PANIER S. Gamma radiation treatment of carbon fabric to improve the fiber-matrix adhesion and tribo-performance of composites[J]. Wear, 2011, 271(9-10):2184-2192.
[19]  GEYTER N D, MORENT R, LEYS C. Influence of ambient conditions on the ageing behavior of plasma-treated PET surfaces[J]. Nuclear Instruments and Methods in Physics Research B, 2008, 266(12):3086-3090.
[20]  LI K Z, WANG C, LI H J, et al. Effect of chemical vapor deposition treatment of carbon fibers on the reflectivity of carbon fiber-reinforced cement-based composies[J]. Composites Science and Technology, 2008, 68(5):1105-1114.
[21]  全国塑料标准化技术委员会. 泡沫塑料及橡胶表观密度的测定:GB/T 6343-2009[S]. 北京:中国标准出版社, 2009. National Technical Committee on Plastic Rroducts of Standardization Adminstration of China. Celluar plastics and rubbers-Determination of apparent density:GB/T 6343-2009[S]. Beijing:Standards Press of China, 2009(in Chinese).
[22]  American Society for Testing and Materials International. Standard test methods for rubber property-compression set:ASTM D395-2006[S]. West Conshohocken:ASTM International, 2006.
[23]  郑玉婴. 功能化氧化石墨烯纳米带/EVA复合材料薄膜的制备及表征[J]. 材料工程, 2015, 43(2):96-102. ZHENG Y Y. Preparation and characterization of functionalized graphene oxide nanoribbons/EVA composite films[J]. Journal of Materials Engineering, 2015, 43(2):96-102(in Chinese).
[24]  NIE M, XIA H S, WU J K. Preparation and characterization of poly(styrene-co-butyl acrylate)-encapsulated single-walled carbon nanotubes under ultrasonic irradiation[J]. Iranian Polymer Journal, 2013, 22(6):409-416.
[25]  HO K K C, LEE A F, LAMORINIEREA S, et al. Continuous atmospheric plasma fluorination of carbon fibers[J]. Composites Part A:Applied Science and Manufacturing, 2008, 39(2):364-373.
[26]  李东风, 王浩静, 王心葵. PAN基碳纤维在石墨化过程中的拉曼光谱[J]. 光谱学与光谱分析, 2007, 27(11):2249-2253. LI D F, WANG H J, WANG X K. Raman spectra of PAN-based carbon fibers during graphitization[J]. Spectroscopy and Spectral Analysis, 2007, 27(11):2249-2253(in Chinese).
[27]  师石夯, 李莉, 王琪. 异相成核剂对聚乙烯醇热塑模压发泡的影响[J]. 塑料, 2013, 42(3):51-54. SHI S H, LI L, WANG Q. Effects of heterogeneous nucleation on thermal compression foaming PVA[J]. Plastics, 2013, 42(3):51-54(in Chinese).
[28]  陈亦峰, 鲁听, 陈红央. 硅烷偶联剂对EVA太阳能电池封装膜/玻璃粘接性能的影响[J]. 包装工程, 2013, 34(3):92-95. CHEN Y F, LU T, CHEN H Y. Effect of silane coupling agent on peeling strength between glass and EVA encapsulation film[J]. Packaging Engineering, 2013, 34(3):92-95(in Chinese).
[29]  PILLAY S, VAIDYA U K, JANOWSKI G M. Effects of moisture and UV exposure on liquid molded carbon fabric reinforced nylon 6 composite laminates[J]. Composites Science and Technology, 2009, 69(6):839-846.
[30]  钱鑫, 支建海, 王雪飞, 等. 碳纤维表面结构对复合材料吸湿性能的影响[J]. 无机材料学报, 2013, 28(2):189-194. QIAN X, ZHI J H, WANG X F, et al. Effect of fiber surface structure on absorption properties of carbon fiber reinforced composites[J]. Journal of Inorganic Materials, 2013, 28(2):189-194(in Chinese).

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133